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Abstract

As recent events have demonstrated, disinformation spread
through social networks can have dire political, economic
and social consequences. Detecting disinformation must in-
evitably rely on the structure of the network, on users particu-
larities and on event occurrence patterns. We present a graph
data structure, which we denote as a meta-graph, that com-
bines underlying users’ relational event information, as well
as semantic and topical modeling. We detail the construction
of an example meta-graph using Twitter data covering the
2016 US election campaign and then compare the detection
of disinformation at cascade level, using well-known graph
neural network algorithms, to the same algorithms applied
on the meta-graph nodes. The comparison shows a consistent
3%-4% improvement in accuracy when using the meta-graph,
over all considered algorithms, compared to basic cascade
classification, and a further 1% increase when topic model-
ing and sentiment analysis are considered. We carry out the
same experiment on two other datasets, HealthRelease and
HealthStory, part of the FakeHealth dataset repository, with
consistent results. Finally, we discuss further advantages of
our approach, such as the ability to augment the graph struc-
ture using external data sources, the ease with which multiple
meta-graphs can be combined as well as a comparison of our
method to other graph-based disinformation detection frame-
works.

Introduction
Social media have become a primary medium of interaction
in modern society – having started as a place for casual dis-
cussion and exchange of ideas. Their massive outreach and
adaptability to individual users’ preferences have made so-
cial networks indispensable for a wide range of political and
activist groups, companies, governments, and mainstream
news outlets. The social importance of these networks stems
from the fact that they are more than just a space for public
discussion. Social networks such as Twitter and Facebook
have become the primary source of information on a global
scale (Westerman, Spence, and Van Der Heide 2014). How-
ever, the spread of disinformation can have a severe negative
social (Chenzi 2020), political (Safieddine 2020), and eco-
nomic impact (Visentin, Pizzi, and Pichierri 2019; Cheng
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and Chen 2020), thus it is currently treated as a fast-growing
cyberthreat (Belova and Georgieva 2018).

Current disinformation detection methods on social me-
dia primarily rely on using part of the available information
either regarding users or local network structure (see Sec-
tion “Related Work”), in order to perform the required anal-
ysis. Treating such features in isolation may lead to poor re-
sults as the manifestation of disinformation is characterized
by a plethora of factors, both internal (user characteristics)
and external (network characteristics and tweet content).

In this paper, we set out to improve our capacity to de-
tect disinformation in social media by proposing a uni-
fied methodology for both internal and external factors. To
demonstrate the value of the proposed method, we focus on
Twitter content. The primary action on Twitter is message
posting by registered users (tweets) or message sharing by
others within the platform (retweets). As such, posting infor-
mation on a particular topic results in a root–tweet (the orig-
inal tweet that has been retweeted), followed by a series of
retweets by other users. This series of retweet events forms
a tree–graph structure which is known as retweet cascade.
Moreover, we construct and analyse a very large dataset re-
lated to 2016 US Presidential Election, consisting of 152.5M
tweets by 9.9M users; In addition, we evaluate our method
on the HealthRelease and HealthStory datasets, part of the
FakeHealth repository (Dai, Sun, and Wang 2020).

In summary, we propose a graph data structure, named
meta-graph having the retweet cascades as nodes. Each cas-
cade disseminates a root–tweet together with the web and/or
media URL(s) embedded in that tweet. The node features
contain: (i) information about the cascade graph structure,
obtained by applying a graph embedding algorithm to each
individual cascade; (ii) relational user information, extracted
from the social network. The edges of the meta-graph repre-
sent relationships between cascades, such as structural sim-
ilarity, number of common users (possibly indicating that
the cascades originate from the same community), or con-
tent similarity (URL or text of the root tweet). One of the
advantages of this approach is that it can be easily expanded
with additional information from other datasets. Finally, in
the US Elections dataset, many URLs corresponding to the
retweet cascades that have been manually labeled as fake or
non-fake, by several external fact-checkers (MBFC 2020;
PolitiFacts 2020; FactCheck 2020; Snopes 2020), resulting



in a total of 43,989 labeled data points (see Table 4).
The construction of the meta-graph poses a series of non

trivial challenges, such as the choice of content-embedding
and graph-embedding algorithms, the selection of relevant
features from the raw data or the filtering of initial edges – all
of which are described in detail in Section “The Meta-Graph
Approach”. By using the meta-graph approach, we trans-
form the cascade classification problem into a node classifi-
cation task. In case retweet cascades are treated as indepen-
dent graphs, then we are dealing with a graph classification
task. Data points are represented by individual cascades, la-
beled by their content. The similarity between cascades is
thus a learned feature, inherent to the model itself. There are
however advantages to making these relations explicit, such
as biasing the algorithm in the desired direction, as well as
the capacity to provide additional, external, information to
the meta-graph edges, otherwise unavailable to a classifica-
tion algorithm.

In Section “Evaluation of Performance Benefits” we show
a comparison between (i) classifying cascades in isolation
(graph classification); (ii) classifying cascades as nodes of
the mentioned meta-graph. We demonstrate that the addi-
tional relational information contained in the meta-graph
leads to consistently higher classification results. For the
graph and node classification tasks, we apply four well-
known graph neural network algorithms, as they currently
represent the state of the art in terms of graph analysis and
prediction. For an overview of graph neural networks, we
refer the reader to some of the recent review papers, such
as (Wu et al. 2020; Zhou et al. 2020; Zhang et al. 2019).
As an additional step, to the initial cascade or meta-graph
features we append the sentiment analysis scores, as well
as the predicted sentiment. This is done so as to avoid in-
stances where a cascade is classified as disinformation, even
though the root tweet is highlighting the possible issues with
a piece of information, showing clear disagreement. A final
set of features comes from topic modeling, where we de-
tect topics, among all tweet texts in the dataset, and assign
their corresponding identifier to each cascade or meta-graph
node. This provides additional information to the classifica-
tion algorithm, and we show that this approach offers 1%
consistent improvements.
Data availability: Part of the US Elections dataset is pub-
licly available (Salamanos et al. 2021) under proper restric-
tions for compliance with Twitter’s Terms of Service (Tos),
General Data Protection Regulation (GDPR). The Fake-
Health repository is publicly available (Dai, Sun, and Wang
2020).

Related Work
Substantial effort has been put into studying false infor-
mation detection in social media. A first set of approaches
concerns performing feature-based detection at user level.
(Ahmed, Traore, and Saad 2017) apply various feature ex-
traction methods to the content of social media posts to de-
tect stylistic characteristics that may give away posts con-
taining disinformation. While this is a significant intermedi-
ary step, it does not consider relational information between
sources and platform users (in the case of Twitter). (Ghosh

Work (User, Net, Content)

(Ahmed, Traore, and Saad 2017) (−,−,+)
(Ghosh and Shah 2018) (−,−,+)
(Zhang, Zhao, and Lecun 2015) (−,−,+)
(Kaliyar, Goswami, and Narang 2021) (−,−,+)
(Castillo, Mendoza, and Poblete 2011) (+,−,+)
(Shu et al. 2019c) (+,−,−)
(Tacchini et al. 2017) (+,−,−)
(Guo et al. 2018) (+,−,−)
(Jin et al. 2017) (+,−,−)
(Gupta, Zhao, and Han 2012) (+,+,−)
(Shu et al. 2019a) (−,+,+)
(Wu and Liu 2018) (−,+,−)
(Shu, Wang, and Liu 2019) (+,+,−)
(Shu et al. 2019b) (−,+,+)

This Work (+,+,+)

Table 1: Summary of the related work based on differ-
ent detection methodologies (user feature-based; network-
based; content-based) that they utilize/combine to identify
fake news in social media.

and Shah 2018) use a similar approach to split the problem
into feature extraction and classification steps, while (Zhang,
Zhao, and Lecun 2015) use character-level convolutional
networks that combine the two. A more recent approach is
that by (Kaliyar, Goswami, and Narang 2021), which uses
the BERT language model (Devlin et al. 2019) to perform
feature extraction. A detailed overview of similar methods
can be found in (Zhou and Zafarani 2020). (Castillo, Men-
doza, and Poblete 2011) assess the credibility of posts based
on the past behavior of users, the tweet content, and other ex-
ternal sources. (Shu et al. 2019c) extract features based on
particular users’ profiles and determine which type of profile
is more inclined to share false information. This is similar to
the methods in (Tacchini et al. 2017; Guo et al. 2018; Jin
et al. 2017) for exploiting user-type characteristics to clas-
sify posted messages as false or not.

Social context-based methods deal both with relations be-
tween users sharing news as well as with information re-
lated to the user and the news itself (for example, the num-
ber of similar postings made by the said user in the past).
(Gupta, Zhao, and Han 2012) propose studying the prob-
lem from a credibility perspective by performing credibility
propagation along a network that comprises events, tweets,
and users. The events in this case roughly correspond to the
root tweet in our approach. However, their approach does
not consider the rich structural information of the cascades
as well as cascade similarity. (Shu et al. 2019a) propose a
sentence-comment co-attention sub-network, aiming to ex-
plain why a piece of news has been detected by an algorithm
as false. At the same time, (Wu and Liu 2018) take the ap-
proach of detecting false information based on its propaga-
tion patterns through the network.

A similar method to the one discussed in this paper is pre-
sented by (Shu, Wang, and Liu 2019). The authors use an



Root Tweets 46,409 Root Users 8204
Retweets 19,588,072 Retweeters 3,630,992
URLs (web and media) 43,989

Table 2: US Elections dataset: Retweet cascades with at least
100 unique retweeters

HeathRelease HealthStory

tweets 43,245 357,851
replies 1418 23,632
retweets 15,343 105,712

Total 60,006 487,195

Table 3: FakeHealth repository: Tweets, replies and retweets
in the collected datasets

embedding framework dubbed TriFN, modelling publisher-
news relations and users’ interaction with the particular
pieces of news simultaneously. Compared to our proposal,
it misses relational information between events (cascades),
which can prove essential in assessing a user’s past behav-
ior, as well as the semantic features added by topic mod-
eling and sentiment analysis. Another interesting approach
is presented in (Shu et al. 2019b) where the authors build a
hierarchical propagation network for false information and
perform a comparative analysis between false and real news
based on linguistic, structural and temporal perspectives.

The methods outlined above roughly fall into three cat-
egories: a) user feature-based detection in which the aim
is to use information at the user level (be it contextual or
behavioral) to assess the type of content a user publishes;
b) network-based detection in which the relational context
is used for content classification; and c) and tweet content-
based detection, in which linguistic features are exploited
for performing classification at the text level. Our proposed
meta-graph data structure provides an effective means to
combine all three methodologies, fully utilizing content,
context, and source information simultaneously, as depicted
in Table 1.

Social Media Data Structure
US Elections Dataset
To analyze disinformation on Twitter, we collected a large
number of tweets related to the 2016 US presidential
election. During that period, state–sponsored disinformation
campaigns are believed to have operated by spreading
millions of tweets with ambiguous political content. Hence,
Twitter account activity from that period provides us with
valuable information for the analysis of disinformation
spread in social media. The belief that many of the tweets
from that period were spreading fake news has been
furthered validated by the fact that Twitter has permanently
deleted lots of them as part of its continuous efforts against
disinformation and malicious activities on the platform1.

1https://about.twitter.com/en/our-priorities/civic-integrity

Crawling: In the period up to the 2016 US presidential elec-
tion – from September 21st to November 7th, 2016 (with
the exception of October 2nd 2016) we collected 152.5M
tweets (by 9.9M users) using the Tweepy2 Python library
for accessing the Twitter streaming API. To consider tweets
to be politically related, they need to include words from a
list of 77 track terms used for the crawling. Track terms as
“hillary2016”, “clinton2016”, “trump2016”, “election2016”
etc. would, with a large degree of confidence, return tweets
that were indeed part of the intense political polarization and
debate that took place during the election period. For each
tweet, we stored 27 features related to a tweet (tweet–ID,
tweet–text etc.), and to the Twitter account (user–ID, user
screen name, number of followers, etc.) who posted that
tweet. Moreover, we collected the “Entities” section, which
contains several metadata such as the “mentions” and the
URLs embedded in the text.

We note that, in this dataset, we have already identified
35.5K tweets from 822 state–sponsored Twitter accounts
based on ground–truth data provided by Twitter itself – a
large sample of state–sponsored disinformation campaigns
from “troll” accounts which operated during that period. Let
us note that “troll” is any account that deliberately spreads
disinformation, tries to inflict conflict or causes extreme
emotional reactions. Hence, our dataset contains valuable in-
formation of ground–truth malicious activities which in fact
were the subject of a previous study regarding the trolls’
activities during the 2016 US elections (Salamanos et al.
2021).

In the retweeting process, there are two actors; (i) the
retweeter; (ii) the root–user, i.e., the user who posted the
original tweet (root–tweet). We concentrate our attention on
retweets that are sufficiently rich in terms of the information
transmitted and the population of users that acted as retweet-
ers. For this reason, we concentrate on cascades for which
the root–tweet contains at least one web or media URL. We
also dropped cascades with less than 100 retweeters. Tweets
that very few users have retweeted do not provide enough
information, even collectively, regarding their political po-
sitions. Following this approach, we analyse 46.4K retweet
cascades consisting of 19.6M tweets (Table 2).

Labeling URLs To perform supervised/semi-supervised
learning, we need to label the collected URLs as “fake”,
“non-fake” or “unknown”. Towards that end, we apply the
following methodology:
Step 1 - Unshortening URLs: The first step involves ex-
panding URLs created from URL shortening services, such
as bitly (Bitly 2021), tinyurl (TinyURL 2021), etc. This step
is required to identify different short URLs that correspond
to the same expanded URL. This step increases the proba-
bility of having a URL match with pre-existing annotated
URLs from other research projects related to the 2016 US
elections, as we explain in the next step. During this step,
we use the unshrtn3 tool to expand the URLs.

2https://www.tweepy.org/
3https://github.com/DocNow/unshrtn



Label Initial Labeling Manual Labeling Difference

Fake 4,386 4,556 +170
Non Fake 915 1,969 +1,054
Unknown 38,688 37,464 -1,224

Total 43,989 43,989

Table 4: US Elections dataset: The number of labeled URLs
obtained at each step of the labeling methodology.

Label HeathRelease HealthStory

Fake 198 374
Non Fake 231 1036

Total News 429 1410

Table 5: FakeHealth repository: Number of news along with
their labels in the collected datasets

Step 2 - Pre-existing Labels: Our dataset includes web-
pages related to the 2016 US elections, a well-studied
dataset with many related research projects available in
open-source version control systems, such as GitHub and
GitLab. Thus, during this step, we aggregate more than 25
related projects with annotated URLs and combine them into
a single database with ≈0.5M labeled URLs. Note that we
only focused on the “fake” and “non-fake” labels and ex-
clude any other labeling schemes (i.e., humor, satire, etc.)
present in the other open-source projects.
Step 3 - Labeling Consistency check: During this step we
examine the labeling consistency across all the datasets we
combine during Step 2. We have kept only consistent labels,
while leaving the inconsistent ones for manual validation, as
we will explain in the next step.
Step 4 - Matching URLs and Labels: During this step, we
perform a URL match between the URLs that we extract
from our dataset and the one we created by aggregating la-
bels from other open datasets related to the 2016 US elec-
tions (Davis 2016; Szpakowski 2020; Macinec 2021). The
output of this step is depicted in Table 4 (second column)
“Initial Labeling”.
Step 5 - Manual Labeling / FactCheck: To increase the to-
tal number of labeled URLs, we then turn our attention to
the “Unknown” URLs of the Initial Labeling phase. We use
four different FactChecking tools, 1. PolitiFacts (PolitiFacts
2020), 2. Media Bias/Fact Check (MBFC) (MBFC 2020), 3.
FactCheck (FactCheck 2020), 4. Snopes (Snopes 2020), and
we manually annotate a subset of the unknown URLs. Since
this step is very time-consuming, we only focused on ex-
panded URLs that correspond to more than one short URL
(see Step 1 above) in our dataset.

The final number of each label is depicted in Table 4
(third column - “Manual Labeling”), while the final column
(“Difference”) depicts the difference between the Initial
Labeling and the Manual Labeling steps.

FakeHealth Datasets
In order to evaluate our method we utilize two datasets of the
FakeHealth repository (Dai, Sun, and Wang 2020). Due to
the twitter policy of protecting user privacy, the full content
of user engagement and network are not allowed to be pub-
lished by the authors, instead, the authors provide a useful
API available at https://github.com/EnyanDai/FakeHealth.
The API provides the code and details on how to download
the full content of users social engagements and network.
Using the provided API we collect all related information,
a summary is depicted in Tables 3 and 5. Note that the final
numbers reported in the above tables is lower by ≈ 1.1%
than the numbers reported by the original authors. This can
be attributed (1) to changes on behalf of the twitter users
that choose to disallow public access of there tweets, (2) the
tweeter itself delete the tweet due to some internal policies,
(3) or the tweeter user account has been deleted.

The Meta-Graph Approach
Before we give the meta-graph’s construction details, we
first provide a formal definition of the data structure.

Definition 0.1 (Meta-graph). Let G = (V,E) be a graph
with vertex set V and edge set E. Let also Xvi and Rei,j be
the feature vectors of node vi and of edge ei,j respectively.
We call G a meta-graph constructed from a set of events in a
social network, if each event corresponds to a vertex vi ∈ V ,
and the feature vectors Xv and Rei,j encode both user and
event relational information.

The node feature vectors in Definition 0.1 encode three
types of features: user attributes, tweet content, and cascade
structural information. A minimalist node feature vector Xv

can be described as

Xv = (Cemb||Xu||Temb||S...), (1)

where ”||” is the vector concatenation operation, Cemb is the
cascade embedding vector (obtained by using some graph
embedding method, in our case DeepWalk (Perozzi, Al-
Rfou, and Skiena 2014)), Xu are the concatenated feature
vectors of all users present in the cascade, and Temb is the
text embedding vector (Devlin et al. 2019), provided that
the tweet also has the text content. S is a vector of senti-
ment analysis scores if one such vector can be constructed,
depending on the presence of text within the cascade tweets.
The user feature vectors concatenated into Xu contain infor-
mation related to the user account itself, such as date of cre-
ation, number of followers, number of tweets, geolocation
data, topic categories, sentiment analysis label and scores,
etc. This formulation allows trivial expansion of node fea-
tures by concatenating representative vectors from other
sources when available.

The meta-graph’s edges are initially constructed based on
common users or a common topic (URL or tweet text). The
corresponding edge feature attributes encode cascade sim-
ilarity and tweet content similarity, once more defined in a
very general manner. An example of a cascade feature vector
is:

Rei,j = (Nui,j
||Vi,j ||Hi,j ...), (2)



, where Nui,j represents a one-element vector containing
the number of common users in cascades i and j, Vi,j is
the value of a graph similarity metric (Zager and Verghese
2008; Blondel et al. 2004; Zhao et al. 2020; Bisseling 2020)
applied to the two cascades. Hi,j stands for a content simi-
larity metric (Gomaa and Fahmy 2013) between the contents
of the original root tweets (and possibly retweets) of the two
cascades, if available. The edge feature vector can, similar
to the node feature vector, be trivially expanded to include
additional relational information between cascades.

The Meta-Graph Construction
There are two main obstacles to be addressed in order to ap-
ply our methodology to the data provided by Twitter. First,
the actual social network – the follower graph – is mostly
unknown; the users’ follower lists are not always accessi-
ble. Second, the raw data returned by the Twitter API have
limited information (by design) regarding the source of in-
fluence in a given retweet cascades. The only available in-
formation provided is the root–tweet and the root–user for
a given retweet. In other words, all the retweeters are con-
nected with the root–user. This star–like cascade structure
(Figure 1(a)) does not depict the true chain of retweet events,
which in fact is a tree, like the one presented in Figure 1(b).

We use the following steps to address the above issues:
Step 1: Construct a graph that approximates the Twitter so-
cial network.
Step 2: Map a cascade to social affiliations of the users that
participate in the cascade. The resulted graph is a subgraph
of the social network. Then, we compute its embedding in a
low dimensional space.
Step 3: Construct the final meta-graph.

We have to note that, we concentrate our analysis on
pure retweet cascades, only. In this way, we ensure that the
text that has been diffused by a given cascade (a chain of
retweets) was exactly the same with the original/root tweet-
text. For this reason, we have excluded the “quotes” from the
meta-graph construction. A quoted-tweet is a special case
of retweet, where the retweeter has added an additional text
above the original one.

The Social Network We leverage the users’ activity as
it is recorded in the data to construct an approximation of
the follower graph – the true social network which is not
publicly available to a large extent. In the Twitter platform,
the interactions between users belong in three categories;
replies, retweets, and quotes – a special form of retweet
– and mentions. Based on these actions, we construct a
graph/network of interactions between the users. We map
users to nodes and directed edges to interactions. For exam-
ple, if a user–i has replied to a user tweet–j, then we add
the edge (i, j). The direction of the edge implies that i is
a follower of j, while the reverse direction represents the
information flow from j to i. In conclusion, we map users
to nodes and use the interactions between users to define
the edges. This process outputs a multi–graph, where many
edges may connect the same pair of users. For this reason,
we discard the duplicate edges keeping only the earliest one.

US Elections dataset: The overall graph has 9.32M

users/nodes connected with 84.1M directed edges. For the
purpose of our analysis, the final social network is repre-
sented by the induced subgraph formed from the 3.63M
users – retweeters and root-users who participated in the
retweet cascades – who are connected with 61.05M directed
edges.

Regarding the two FakeHealth datasets: In the HealthRe-
lease we have 9,055 total users that participate in the retweet
cascades. The corresponding social network counts 8,218
users (nodes) connected by 10,510 edges. In the HealthStory
the total number of users is 64,593. The corresponding so-
cial network consists of 57,851 users and 88,750 edges.

The FakeHealth repository includes the user-following
adjacency lists who represent the ground-truth social net-
works. Specifically, in the HealthRelease we have 8,566
users connected by 177,866 edges. The HealthStory con-
sists of 62,011 users and 3,402,241 edges. Having this in-
formation available, We compare the “empirical” social net-
works which we constructed based on the users’ actions with
the ground user-following relations that are available for the
HealthRelease and HealthStory. In short, for both datasets,
we constructed the “empirical” social network based on the
actions between the users (mentions, replies, retweets). We
restrict our attention only to those users who participated in
retweet cascades, since only this graph region is involved in
the meta-graph method. Then, we compared the “empirical”
edges (i.e. relations) with the ground-truth ones. The 65%
and 59% of the “empirical” edges for the HealthRelease
and HealthStory respectively, appear in the ground-truth. Al-
though these numbers are not very high they do not affect the
overall validity of the meta-graph method. Our goal is not to
predict the ground-truth social network but to use past inter-
actions among the users in order to construct a small graph
(per cascade) where we can compute the DeepWalk embed-
ding.

From Cascades to Graph Embeddings As we men-
tioned previously, a retweet cascade is a series of chain
events upon the same root–tweet. Some of the users have di-
rectly retweeted the root–tweet, whereas some others have
retweeted a retweet of a friend on the same root–tweet
(retweet of a retweet). This tree–like structure is the true
retweet cascade (see Figure 1(b)) and reflects the diffusion
path of information that has been transmitted by the users
in the social network. The problem we face here is that the
data provided by Twitter do not represent the true cascades.
The raw data contain only the retweet & retweeter IDs and
the root–tweet & the root–user IDs. Hence, it is unknown
who was influenced by whom during the retweeting process.
The raw–data correspond to a star–like graph where all the
retweeters are connected with the root–user. As a result, this
form does not provide sufficient structural information. This
is a well-known problem in the literature and many methods
have been proposed to estimate the true diffusion path (Goel
et al. 2015).

To address this problem, we leverage the social network
we have constructed. We construct a subgraph formed by
the interactions that the retweeters of this cascade have had
in the past. Specifically, for a given retweeter i who per-



Figure 1: (a) The raw data that are provided by Twitter API correspond to a star graph structure. (b) The true retweet cascade
tree, which is actually unknown, highlights the root tweet and subsequent retweets i.e the true series of retweet events. (c) The
proposed meta-graph data structure: every node represents a Twitter cascade. The cascade features are given by the cascade
vector embedding; the user features vector; the tweet text embedding and sentiment analysis scores (if retweet text is available).
The edge features represent cascade structural similarity, i.e number of common users. This can easily be expanded with
additional attributes, either from current or external datasets.

formed her retweet at date t, we identify which friends she
had before the date t and which of them belong to the set of
retweeters of this cascade. Then we append this set of edges
(if any) with the star–like structure, where each retweeter
is connected with the root–user. Finally, we discard any du-
plicate edges and produce the undirected version. By this
method, the subgraph is always connected. The extreme case
occurs when the retweeters did not have any previous inter-
action. Then, the resulted graph coincides with the raw data
collected from Twitter. In summary, the subgraph is just the
star–like graph (i.e., the raw Twitter data) enhanced by the
retweeters’ social relations. This construction per cascade
represents the social structure that the participants of the cas-
cade had before being activated and be able to perform their
retweet.

Each cascade should use the corresponding subgraph
as a feature that will reflect the structural (social) relation
that the cascades’ participants had. To achieve that, in
a consistent way, we produce the embedding of each
subgraph to a low dimensional space. We use the Deep-
Walk algorithm (Perozzi, Al-Rfou, and Skiena 2014) and
specifically the Karate Club extension library’s imple-
mentation for NetworkX (Rozemberczki, Kiss, and Sarkar
2020). The DeepWalk embedding is a N × 128 matrix,
where N is the number of users that participated in the
cascade. We applied the default parameters of this im-
plementation, that is: (i) Number of random walks =
10; (ii) Length of random walks = 80; (iii)
Dimensionality of embedding = 128.

Topics and Sentiment Analysis While the previous set of
features were concerned with user similarity and relational
information extracted from the social network, the final fea-
tures, which complete the meta-graph, are focused on se-
mantics and subject-based grouping of tweet-retweet cas-
cades. For this purpose we carry out two tasks, topic de-
tection (on the US Elections dataset) and sentiment analy-

sis of the root-tweet content. For the former, as the initial
number of topics covered by our dataset is unknown, we
employ a Hierarchical Dirichlet Process (HDP) (Teh et al.
2005; Newman et al. 2009), using the Tomotopy library
(bab2min and Fenstermacher 2021). Three parameters of the
HDP model are changed from the default values, namely
min cf = 5, gamma = 1 and alpha = 0.1, as these pro-
duce the best results. For term weighing, we produce three
instances of the model with equal term weighing, Point-wise
Mutual Information-based weighing and Inverse Frequency
term weighing (low weights for terms with high occurrence
and vice-versa). After training the three versions of the HDP
model on our tweet content, we use them in order to assign
a topic ID to each tweet-retweet cascade.

The second step in the process is to perform sentiment
analysis on the root-tweet of each cascade. This is done us-
ing a pre-trained BERT language model, with the help of
the Transformers library (Wolf et al. 2020). Along with the
three topic identifiers obtained above, the sentiment label
and sentiment score form the semantic features used in our
approach.

The semantic information, together with the embeddings
obtained in the previous section, represent the features of
each individual cascade, in the case of graph-level classi-
fication, or of each individual node, in the meta-graph, for
the node-classification task. In the case of cascades, it is as-
sumed that retweets share the topic and sentiment of the root
tweet.

The Meta-graph The final step is the construction of the
meta-graph itself. That is, a meta–structure represented by
a graph that has the retweet cascades as nodes. The edges
of the meta-graph are defined by the proximity among the
cascades in terms of their retweeter population.

In particular, two cascades i and j are connected by
an edge if |RTi ∩ RTj | ≥ 1, where RTi and RTj are
the set of retweeters of i and j. In other words, two cas-



Figure 2: Meta-graph visualization for the US Elections
dataset: Giant component of the meta-graph produced by
the disparity filtering with α=0.1. “Fake” nodes/cascades
have been colored red, while the “non–fake” nodes are
green. The meta-graph consists of 8291 cascades connected
by 1,363,702 undirected edges and it has 3 connected
components. The giant component counts 8282 nodes and
1,363,680 edges.

cades are connected by an edge when they share at least
one retweeter. In conclusion, the meta-graph is always an
undirected weighted graph, where the weight of each edge
is equal to the number of retweeters that participate in
both nodes/cascades. In case that the meta-graph is very
dense, we apply the disparity filtering method for undirected
weighted graphs (Serrano, Boguñá, and Vespignani 2009).
Given a significance level α, the disparity filter identifies
which edges should be preserved in the graph (see Equation-
2 in (Serrano, Boguñá, and Vespignani 2009)).

US Elections dataset: The meta-graph of 8323 la-
beled cascades counts 8323 nodes/cascades connected by
15,946,910 undirected edges. Since the graph is extremely
dense, we apply the disparity filter. In particular, we evalu-
ate this approach for several α values by producing first the
corresponding filtered meta-graphs and then by performing
the classification in each one independently. For α > 0.1,
the classification accuracy does not change significantly (see
Table 6) even when only the 16% of the edges are present
(α = 0.2). We get the best accuracy 87.70 for α = 0.5
(49% of the edges survived the significance test) which for
demonstration purposes we also present later on, in the final
evaluation section.

As an example, Figure 2 presents the giant component of
the meta-graph that has been produced by the disparity fil-
ter for α = 0.1. 8291 nodes/cascades out of the 8323 are
connected by 1,363,702 undirected edges. The graph has 3
connected components. The giant component counts 8282
nodes and 1,363,680 edges.

FakeHealth datasets: In the HealthRelease the full ver-

Figure 3: Giant components of the HealthRelease (upper
figure) and HeathStory meta-graphs (lower figure). “Fake”
nodes/cascades have been colored red, while the “non–fake”
nodes are green. Both are connected graphs.

sion of the meta-graph counts 1969 cascades connected by
11,581 undirected edges (Figure 3, upper figure). In the
HealthStory the full meta-graph consists of 13,263 cascades
connected by 100,001 edges (Figure 3, lower figure). Since
these graphs are not very large, We use the full version for
the classification.

Node features: The features of a given node/cascade with
N users (the retweeters plus the root–user) are the follow-
ing: (1) The DeepWalk embedding of the correspondent
subgraph – a N × 128 matrix; (2) The dates of users’ ac-
count creation; (3) The maximum value of users’ followers
count; (4) The maximum value of users’ friends count; (5)
The maximum value of users’ statuses count; (6) The maxi-
mum value of users’ favorites count; (7) A Boolean identifier
whether the users’ account is verified; (8) The language of
the users’ account. Note that features 2 to 8 comprise an ar-
ray of length N . The maximum values per user are based on
the retweets that the user has posted; (9) The most represen-
tative topic of the root–tweet based on the three topic mod-
els – three values. Regarding the two FakeHealth datasets,
we set as topics the news’ “tags” and “category”. This in-
formation is provided by the “reviews” in the FakeHealth
repository; (10) The sentiment (label, score) of the root–
tweet – two values, either (2, score) for ’Positive’ label or
(1, score) ’Negative’ label.

Regarding the US Elections dataset, we note that we anal-
yse the retweet cascades in which at least one URL is em-
bedded in the root–tweet. Since the labeled part of the data
is the URLs, we use these labels as ground–truth. We fo-
cus our attention on the 6525 URLs that have been labeled
as “fake” and “non–fake” (Table 4). For each URL, we col-
lect the cascades that had this URL embedded in their root-



α
Number
of Nodes

Number
of Edges

Accuracy of
GCNConv (%)

0.01 8171 300,330 83.96
0.02 8221 434,643 84.06
0.03 8246 555,934 84.20
0.04 8260 673,595 84.46
0.05 8262 788,212 84.44
0.06 8268 902,797 84.56
0.07 8277 1,016,344 84.68
0.08 8285 1,131,124 85.04
0.09 8290 1,247,597 85.17
0.1 8291 1,363,702 85.34
0.2 8310 2,606,347 86.52
0.3 8311 4,079,032 86.60
0.4 8315 5,742,849 87.64
0.5 8319 7,763,018 87.70
0.6 8319 9,899,401 87.66
0.7 8319 12,536,442 86.91
0.8 8320 14,866,835 87.12
0.9 8320 15,829,764 86.45

Table 6: US Elections dataset: GCNConv performance on
meta-graphs produced by the disparity-filter for different
values of the significance level α.

tweets. Moreover, there is no one–to–one correspondence
between the cascades and the URLs – multiple cascades may
have spread the same URL. This is why the number of la-
beled cascades is larger than the number of labeled URLs.
Moreover, a cascade might contain several URLs, “fake” and
“non–fake” ones. In this case, we discard these cascades.

Evaluation of Performance Benefits
In order to evaluate the benefits of the meta-graph method,
we perform a series of experiments aiming to address the
following research questions: How effective is the meta-
graph structure for the cascade classification? Will the topics
(broad subject shared by a set of tweets) and sentiment labels
(positive or negative sentiment, together with the confidence
score) improve the separation of classes if they are included
in the features?

In order to address these questions, we follow two classi-
fication strategies: (1) First, we ignore the information that
is represented by the meta-graph edges and we reduce the
problem to a graph classification task. Each retweet cascade
is represented by a subgraph of the social network (see Sub-
section “The Meta-Graph Construction”), namely a small
graph which consists of those users who have been involved
in the cascade. The users’ features are those we presented in
Subsection “The Meta-Graph Construction”. Moreover, we
assume that each user inherits the topic and sentiment label
from the root–tweet. In other words, for a given cascade, all
users have the same topic and sentiment label as feature. (2)
The second classification approach is node-classification in
the meta-graph level, where each node corresponds to a cas-
cade (see Figure 1(c)). In other words, we classify the nodes
of the meta-graph based on the meta-graph structure to-
gether with the nodes/cascades features. Now the nodes cor-
respond to individual cascades. In both approaches, we rely

Model Cascade
Classification

Meta-graph
Node Classification

2016 US Presidential Election Dataset
Without Topics
and Sentiment

Analysis

Accuracy
(%)

F1
Score

Accuracy
(%)

F1
Score

GCNConv 83.30 0.721 86.75 0.812
GATConv 83.28 0.716 85.52 0.793

HypergraphConv 82.17 0.693 85.67 0.791
SAGEConv 82.23 0.702 85.12 0.787
With Topics

and Sentiment
Analysis

Accuracy
(%)

F1
Score

Accuracy
(%)

F1
Score

GCNConv 84.23 0.748 87.70 0.830
GATConv 83.74 0.732 86.62 0.822

HypergraphConv 83.91 0.731 86.67 0.825
SAGEConv 83.42 0.727 86.84 0.810

Health Release Dataset
With Topics

and Sentiment
Analysis

Accuracy
(%)

F1
Score

Accuracy
(%)

F1
Score

GCNConv 86.54 0.890 88.07 0.936
GATConv 84.43 0.753 87.81 0.903

HypergraphConv 85.76 0.794 86.60 0.892
SAGEConv 84.82 0.758 86.74 0.896

Health Story Dataset
With Topics

and Sentiment
Analysis

Accuracy
(%)

F1
Score

Accuracy
(%)

F1
Score

GCNConv 59.23 0.616 60.16 0.751
GATConv 60.18 0.632 61.03 0.757

HypergraphConv 56.80 0.587 58.70 0.735
SAGEConv 57.36 0.590 57.36 0.726

Table 7: Classification results obtained with four different
graph neural network types, on three datasets: the 2016 Pres-
idential Election dataset and the FakeHealth package, com-
posed of the Health Release and Health Story datasets.

on the same subgraphs from the constructed meta-graph. In
addition to these and in order to justify the need for topic
modeling and sentiment analysis, we compare the two clas-
sification strategies with and without the use of topics and
sentiments as nodes features. The intuition is that the topic
modeling and sentiment analysis introduce semantic infor-
mation in the meta-graph structure, providing a quantifiable
measure of agreement as well as topical relational informa-
tion to other nodes.

Our findings show that: (1) This method of connecting
cascades/nodes is effective enough to improve by 3%–4%
the classification accuracy. In the meta-graph two cascades
are connected by an edge if they have at least one retweeter
in common. (2) When we include the topics and sentiment
labels as features, the accuracy of all classifiers is increased
by approximately 1%.

Regarding the actual methods, we applied the follow-
ing state-of-the-art graph neural networks (GNNs) for both
graph and node classification: GCNConv (Kipf and Welling
2016), SAGEConv (Hamilton, Ying, and Leskovec 2017),
HypergraphConv (Bai, Zhang, and Torr 2021) and GAT-



# News Article Title Source
1 Clinton: Planned Parenthood videos ’disturbing’ https://edition.cnn.com/2015/07/29/politics/hillary-clinton-planned-parenthood-anti-abortion/index.

html
2 Hillary Clinton Email Archive - Wikileaks https://wikileaks.org/clinton-emails/
3 4 key moments from tonight’s messy debate https://edition.cnn.com/politics/live-news/presidential-debate-coverage-fact-check-09-29-

20/index.html
4 Transcript of the Second Debate https://www.nytimes.com/2016/10/10/us/politics/transcript-second-debate.html
5 FBI probing new emails related to Clinton case https://www.cnbc.com/2016/10/28/fbi-probing-new-clinton-emails.html
6 Emails Related to Clinton Case Found in Anthony Weiner Inves-

tigation
https://www.nbcnews.com/news/us-news/fbi-re-open-investigation-clinton-email-server-n674631

7 Hillary Clinton Leads Donald Trump by 14 Points Nationally in
New Poll

https://time.com/4546942/hillary-clinton-donald-trump-lead-poll/

8 John Podesta email article https://en.wikipedia.org/wiki/Podesta\ emails
9 Are Fake News Polls Hiding a Potential Trump Landslide? https://www.americanthinker.com/articles/2020/07/are fake news polls hiding a potential trump

landslide.html
10 Russian trolls’ chief target was ’black US voters’ in 2016 https://www.bbc.com/news/technology-49987657

Figure 4: US Elections dataset: Top: The top-10 Topics by the Hierarchical Dirichlet Process (HDP) when all terms weighted
equally. Bottom: The corresponding web-articles of each topic.

Conv (Veličković et al. 2017).
For the graph classification task, we have applied the al-

gorithms to the 8318 subgraphs (after filtering contradictory
labels). As the treated graphs are relatively small, and GNNs
generally do not benefit from an increase in the number of
layers (Oono and Suzuki 2020; Li, Han, and Wu 2018; NT
and Maehara 2019; Alon and Yahav 2020), we restrict the
models to one graph feature extraction layer and one dense
layer. We also use a 60-20-20 train-validation-test split. The
GNNs have been implemented in PyTorch Geometric (Fey
and Lenssen 2019), maintaining the following hyperparam-
eters constant across experiments:

# of epochs = 50, dropout = 0.8, learning rate = 10−4

In Table 7 we present the obtained results, which show a
3%-4% gain in accuracy in favor of the meta-graph method,
i.e. for the node classification task. We get the best perfor-
mance when we include the topics and sentiment labels. For
state-of-the-art algorithms this represents a significant gain,
and primarily depends on the inclusion of relational infor-
mation between retweet cascades. Regarding the topic mod-
eling and sentiment analysis, we observe that the 1% gain
in accuracy, is nonetheless an indicator that the discovered

topics and sentiment labels indeed lead to an improvement
to the separation of the classes.

Due to the imbalance of the dataset, we also present F1
scores for all our experiments. We observe a general consis-
tency in terms of the advantage provided by the meta-graph
method compared to regular cascade classification. In par-
ticular, the extra relational information present in the meta-
graph does contribute to the reduction of the number of false
positives and false negatives.

In Table 7 we also present results for two health-related
misinformation datasets, namely HealthRelease and Health-
Story. These smaller datasets have the added disadvantage
of simpler cascade structures. While most cascades present
contain a small number of users (sometimes just a tweet-
retweet pair), larger cascades tend to have a star-graph
shape. This reduces the structural information that our pro-
posed method uses, with the help of graph embedding algo-
rithms, such as DeepWalk.

We conclude the analysis by portraying a representative
sample of the topic modeling in order to emphasize the ef-
fectiveness of this approach. Figure 4 depicts the top–10
topics based on the HDP-model (Hierarchical Dirichlet Pro-



cess) when all terms weighted equally. For each topic in the
top–10 we plot the top–10 terms by their log-likelihood val-
ues. In addition, in Figure 4 (Bottom), for each top–10 topic
we show a representative news article related to the period of
the 2016 Presidential elections. For instance, the top terms
of Topic-1 and Topic-2 reflect the ”Planned Parenthood” de-
bate and the Wikileaks source related to Hillary’s Clinton
leaked emails, respectively.

Discussion
Our proposed method addresses the detection of disinfor-
mation in social networks, by exploiting network structure
as well as post content and user sentiment. The example
datasets focus on the Twitter social network, whose char-
acteristic is given by the shortness of exchanged user mes-
sages. This has an effect on two components of our method:
the sentiment analysis component and the text embedding.
As some tweets may not contain any original content, and
represent just links (retweets) to other user’s posts, we have
designed our method to be robust to this particular type of
information scarcity, by exploiting network structure wher-
ever possible.

Network structure is an important aspect with a clear im-
pact on classification results. The meta-graph is constructed
from individual tweet-retweet cascades. As such, the struc-
tural information of the cascade is contained within a part
of the corresponding features of the meta-graph node. These
features are obtained by using graph embedding algorithms,
for example DeepWalk, in order to capture cascade structure
and connectivity patterns. In the case of very small cascades,
or when the majority of cascades have star-graph shapes, the
embedding vectors are very similar. The effects of this on
the performance of our method are visible in Table 7, for the
specific case of HealthStory.

In the present paper we adopt a simple method for trans-
ferring the URL labels, namely the labels of the root tweet
content, to the entire cascade, by assuming that the label of
the cascade is given by the label of the content of its root
tweet. This can, in some situations, create problems, for in-
stance if the root tweet and all following retweets share a
URL containing false information, with the explicit purpose
of exposing it, the entire cascade will be labeled as disinfor-
mation. We deal with this potential issue by removing ”quote
tweets”, containing additional text. If retweet contents are
available, then one can easily expand this trivial labeling to
take the already computed sentiment analysis scores into ac-
count. If the sentiment scores are strongly negative, a dis-
agreement between the tweets and URL content can be de-
tected and the label of the cascade can be adjusted accord-
ingly.

Due to the nature and structure of our considered datasets,
a direct benchmark comparison with similar algorithms such
as FANG (Nguyen et al. 2020) and Hierarchical Propaga-
tion Networks (Shu et al. 2019b) is not possible, as the men-
tioned algorithms require the construction of different types
of graphs, for which the considered datasets do not contain
the relevant information. An example is the heterogeneous
graph required for the FANG algorithm, where both arti-
cles/posts and users are interconnected nodes.

The strength of our method relies on it’s capacity to treat
information-scarce datasets as long as structure can be ex-
ploited, due to the graph embedding features playing a cen-
tral role. This also displays the inadequacy of the method to
datasets which have very limited graph structure, such as the
HealthStory dataset, on which the performance both in terms
of accuracy and F1 score is very low. In limit-cases, for ex-
ample in treating isolated nodes, the node classification task
naturally reduces to a simple graph (cascade) classification
task. As such, the meta-graph approach does not need to re-
move or provide special treatment to isolated nodes.

Conclusion

Recent false information detection and classification
methodologies rely on user features extracted from the so-
cial network, network structure, or the posting (in our case,
tweet) content itself. This paper aims to unify these ap-
proaches via the use of a single data structure, which we
call a meta-graph. The meta-graph node features represent
retweet cascades, containing information about the tweet-
retweet event and the individual users taking part in it. En-
coded within the node features, we also add the tweet con-
tent, where available. At the same time, the edge features
contain feature vectors whose elements are similarity met-
rics between cascades. This information is beneficial when
only a small number of cascades in the meta-graph are la-
beled.

By combining all available information about a social-
network event into a single data structure, we pro-
vide a graph-specific classification algorithm with an
informational-rich data format that allows it to outperform,
in terms of classification accuracy values, approaches based
on isolated elements (such as individual graphs). The ad-
ditional similarity information among pairs of cascades is
beneficial in semi-supervised classification settings because
labels are routinely hard to obtain, and only a small fraction
of the data may have them.

Another advantage of the method is the size of the dataset
itself. Even if the meta-graph contains considerably more in-
formation than the individual constituent cascades, the stor-
age cost is not prohibitive. In our case, the largest con-
structed meta-graph occupies approximately 3 GB.

The presented formalism opens the door for a wide range
of future extensions. The meta-graph can be generalized
to include not just bipartite relations between events (cas-
cades), but also multipartite ones, thus converting the data
structure into a hypergraph. Another possible research di-
rection is concerned with finding the optimal features to in-
clude for nodes and edges. This is far from trivial, as there
is a large variety of parameters available, characterizing a
tweet or a particular user, as well as many ways in which
the graph structure of the cascades can be encoded. Finally,
relation learning, similar to the case of knowledge graphs,
can be considered, and learned edge features be added to
existing ones.
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