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ABSTRACT KEYWORDS

Targeted online advertising is a multi-billion dollar business based
on the ability of profiling and delivering targeted ads to a wide
range of users. Due to the privacy erosion associated with such busi-
ness, researchers are trying to understand how profiling works and
anti-tracking applications are becoming popular among users. Both
research and privacy-enhancing apps, however, target ad-networks
or over-the-top providers that have unrestricted access to users’ on-
line activity. There seems to be little interest in potential profiling
activities by “network observers” like ISPs or VPN providers. On
the one side, this may be explained by the pervasiveness of TLS that
secures connections end-to-end. On the other side, TLS does leak
some information, and it is not clear what an eavesdropper can learn
about a user, despite her traffic being encrypted.

In this paper, we show that a network observer can build accurate
user profiles notwithstanding the limited visibility due to TLS. In
particular, we introduce a technique based on representation learning
algorithms that can build profiles by only using the hostnames of
URLSs requested by users. To evaluate the accuracy of the profiles
built with our technique, we setup an experiment where we serve per-
sonalized ads to more than one thousand real users over a period of
one month. We compare the click-through rate of ads served by our
system with the one of ads served by ad-networks. We empirically
show that the quality of profiles that a network observer could build
is comparable to the quality of profiles available to ad-networks and
over-the-top providers. This is particularly worrisome since current
anti-tracking mechanisms cannot counter profiling activities by net-
work observers, whereas effective mechanisms like TOR incur in a
performance and usability penalty.

CCS CONCEPTS

* Security and privacy — Privacy protections; « Information sys-
tems — Display advertising; Content match advertising; * Net-
works — Network measurement.
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1 INTRODUCTION

Online targeted advertising is a multi-billion dollar business grounded
in a complex network of stakeholders that collect, buy, and sell
user data with the goal of assembling accurate user profiles. Demo-
graphic data, income and, ultimately, the history of visited websites
are used as proxies of user interests. However, the ways in which
such personal data is mapped to specific interests and, ultimately,
personalized ads remains largely unknown.

The widespread collection of user data and the erosion of privacy
associated with it, has fostered research on data transparency with
multiple initiatives that try to shed light on the ways user data is
collected and used for targeted advertising [1]. At the same time,
apps and browser extensions to limit tracking and data collection
have become popular among users.

Both research activities on data transparency and privacy-enhancing
apps (e.g., ad-blockers) try to overcome the tracking mechanisms of
ad-networks and Over The Top (OTT) providers that have unfettered
access to the online activities of a user. However, there seems to be
little interest in profiling activities by “network observers” such as
ISPs or VPN providers. On the one side, there may be little to fear
as the pervasiveness of TLS only allows eavesdroppers to learn the
hostname requested by the user—leaked by the client_hello
message of the TLS handshake. On the other side, profiling activities
by a network eavesdropper cannot be prevented with ad-blockers and
alike. Further, it is not clear how much the requested hostnames tell
about a user and, to the best of our knowledge, no previous work has
tried to assess the effectiveness of user profiling from the perspective
of a network eavesdropper. Motivated by these considerations, we
set out to answer two important questions.

Question 1. Is it possible to build user profiles from the perspective
of a network eavesdropper, despite the limited view due to TLS?

Question 2. Are user profiles built by a network eavesdropper more
or less accurate than user profiles created by ad-networks and OTTs?
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To answer the first question, we propose a profiling technique
that solely uses the hostnames of URLs that users visit. Even if
hostnames are available to network eavesdroppers, hostnames by
themselves may not be very useful to profile users. The main chal-
lenge is to find a mapping from a hostname to a set of semantically
meaningful “topics” or “categories”. For example, hostnames like
booking.com may be mapped to topics such as “travels”, whereas
hostnames like espn.com may be mapped to “sports”. Ontologies for
this task are available and have been used in previous work [2—4],
Google Adwords being the most popular one. The problem with an
ontology is its “coverage” since many ontologies simply do not cate-
gorize a large fraction of the Web. One may even think of building
its own ontology by, e.g., crawling webpages and analyzing their
content [5]. Yet, when a user visits a website, a network observer
is likely to see requests for CDNs and API services and it may not
be feasible to infer the actual website. In order to mitigate the lim-
ited coverage due to ontologies and the information loss due to the
perspective of a network observer, we propose an algorithm based
on a neural network to learn relations among hostnames. Intuitively,
our algorithm is able to learn similarities among different hostnames
by understanding the temporal relations between user requests to
those hostnames. Once we are able to group similar hostnames, it
is sufficient to obtain the topic of one of them (e.g., by using an
ontology), in order to categorize the remaining ones.

Regarding the second question, we note that there is no popular
metric to measure the accuracy of a profile or to compare the output
of two profiling techniques. We therefore leverage the Click-Through
Rate (CTR) as a meaningful proxy to compare different approaches.
CTR is defined as the ratio of displayed ads that are clicked by users
and is a well-known metric to measure the quality of ad campaigns.
We use CTR to indirectly measure the accuracy of profiles built by a
network eavesdropper that uses our neural network algorithm, and
compare it with the accuracy of profiles available to ad-networks.

We build user profiles and assess their accuracy by means of a
one month experiment involving 1329 users across 17 countries.
The experiment leverages our Chrome extension available at https:
/Iprivacyaware.nlehd.de/CoNext21/captureData.crx. The extension
has full access to browsing sessions. We use it to collect only the
hostnames of URLs visited by users and to manipulate ads they see
on the screen (i.e., to replace an ad served by ad-networks with one
of our choice). Results show that CTR of ads picked according to
the profiles output by our algorithm are comparable to CTR of ads
served by ad-networks. We conclude that profiles built by a network
observer may be quite accurate despite the limitations due to TLS.

We remark that we have no evidence of profiling activities by
network observers such as ISPs or VPN providers. Yet, we provide
evidence of what a network observer can learn about a user by
looking at her (encrypted) traffic. Network observers could even use
techniques different from ours. Some of them, like ISPs may use
additional customer data (e.g., gender, age, residential address) to
improve profiling. Profiles may be sold to third-parties or could be
used for advertising by other means (e.g., ads sent via email or SMS).
Further, we argue that profiling activities by network eavesdroppers
are particularly worrisome because countermeasures like ad-blockers
cannot prevent profiling by network observers, whereas tools like
TOR incur in a performance and usability penalty that may not be
tolerable by all users or applications.
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1.1 Ethical considerations

We consider this study to potentially raise ethical concerns be-
cause of the usage of data and profiling of real users. Therefore,
we have taken precautions to mitigate the impact of the data col-
lection and processing phases. First, the Data Protection Officer
available at one of our institutions reviewed and approved the study.
Second, we resorted to the Spanish! association of internet users
(https://www.aui.es/). The association has advised us throughout the
whole experiment by, e.g., reviewing the extension and all the forms
that users were asked to accept in order to participate in our study.
In addition, the association has controlled the distribution of the
extension and its updates, and has obtained explicit user consent to
collect and process their data. Further, we did not manage/store any
personal user information (e.g., name, email, IP address, etc.) but
we only assigned a random ID to each installation of the extension.
Finally, communication between the plugin and our back-end server
happened over TLS. Collected data was periodically transferred to
and stored on a machine in a locked room and with no network
access. Access to the room and to the machine is only allowed to
authorized personnel.

2 RELATED WORK

Online Advertising Ecosystem. Lerner et. al., [6] study the evolution
of web tracking over time (1996-2016) by analyzing the total number
of third-party trackers embedded in popular first-party domains. The
authors discover that third-party tracking on the Web has increased
in prevalence and complexity since 1996. The authors of [7] conduct
a large measurement study by crawling 1M popular websites and
by analyzing the presence of different tracking techniques, such
as, stateful (cookie-based) and stateless (fingerprinting-based), and
the exchange of tracking data based on cookie-synching. Mayer et.
al., [8] study the policy debate surrounding third-party web tracking
and the relevant technology around it. The authors of [9] use an ISP
dataset with more than 3M subscribers to measure the extent of ad-
related traffic in mobile networks. On a similar path, the work of [10]
use a mobile app to analyze traffic at the user device. The authors
observe that sharing harvested data among tracking entities for user
profiling purposes is the norm. The work of [11] studies the tracking
behavior of more than 950K mobile apps and shows that applications
related to news and children are among the most privacy-invasive
ones. Binns et. al., [12] compares the web and mobile version of
different online services with respect to web tracking and privacy.
Vallina et. al., [13] studied the tracking and advertising in porn
websites and Pachilakis et. al., [14] measured the Header Bidding
ecosystem.

User Profiling. The methods used to profile users by the advertising
industry are in general non-public. While we are not aware of any
previous work that creates interest-related profiles from network traf-
fic, a handful of previous work has tried to profile users in different
contexts. Previous work attempted to build user profiles by leverag-
ing social network activity [15, 16]. Kumar et. al., [17] builds user
profiles for personalized news delivery, by using traces of news read
in online newspapers. Different from ours, their approach requires
access to the text of the news read by users. Alotibi et. al., [18]
profiles users from network data. Their approach is based on the

!'Some of the authors of this paper are located in Spain
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theory that users interact with Internet applications in a unique man-
ner and the system they propose is designed to identify users in the
context of insider misuse detection. Our previous work [4] leverages
network traces (in particular, packet sizes) to identify the exact URL
visited by a user, even when the connection goes over https. As we
argued before, once a profiler obtains the URL requested by a user,
(lack of) coverage by available ontologies may hinder the process of
building a user profile. Further, the system in [4] detects URLs of
depth 1 (i.e., URLSs of pages linked on the main page of a website)
and it is not clear how it would work to detect pages at arbitrary
depth.

3 BACKGROUND

Parties. Websites where ads are displayed are known as “publishers’
(e.g., nytimes.com) that sell advertising estate on their webpages.
The visual part of an ad is referred to as its “creative” that could be
text, a video or an image (e.g., an image of a car). The ad is linked
to a “landing page”, i.e., the page that opens when the user clicks on
the ad and where the object of the ad is offered (e.g., the webpage
of the car manufacturer). Behind the curtains, a complex network
of stakeholders—Ad-networks, ad-exchanges, Demand and Supply
Side Platforms (DSPs, SSPs), Data Management Platforms (DMPs),
etc.—act as brokers between demand (companies willing to adver-
tise their products) and offer (webpages offering ad estate) [19]. This
brokerage activity leverages user profiles (created, in turn, by other
companies specialized in “tracking” users and collecting their data)
to ensure that ads are served to the right audience. Often, publish-
ers, advertisers, brokers and trackers are owned by one single firm,
making the online advertising ecosystem extremely complex and
blurry. We refer the reader to Pastor et al.[20] for a comprehensive
description of the online advertising ecosystem.

Ad types. Ads may be divided in two main types. “Premium” ads
typically promote important advertisers willing to pay premium
prices to show their brand on top publisher websites. These ads
are served to all users visiting a given website within a time-frame.
For instance, Coca-Cola (the advertiser) may pay espn.com (the
publisher) to show its creative to all users that browse that website
on a given day. Furthermore, premium ads are placed on a prominent
part of the webpage, sometimes even over the content of the webpage
itself. “Programmatic” ads are the ones that are served by taking
into account the profile of an audience. In particular, programmatic
ads include “retargeted” ads, i.e., ads based on a product seen by a
user in a recent browsing session, “contextual” ads, i.e., ads based
on the demographic properties of an audience or on the topic of the
website where they are displayed, and “targeted” ads, i.e., ads based
on a user profile.

Business model. Displaying an ad to a user on a website is referred to
as ad “impression”. Publishers are usually compensated by the num-
ber of impressions. The quality of an advertising campaign is usually
measured by so-called Click Through Rate (CTR), i.e., the ratio of
the number of impressions that were clicked by the audience (and
that led to the landing page) over the total number of impressions.
An accurate user profile allows the ad ecosystem to understand on
which ads that user will most likely click and, ultimately, improve
the click-through rate of an advertising campaign. Yet, depending
on the product, some campaigns may be optimized to increase the

s
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expected revenue rather than the click-through rate. For example, the
advertiser may prefer fewer users that eventually buy its products,
rather than a larger number of user that visit the landing page without
making purchases. Once again, having accurate user profiles is key
to understanding which audience is likely to buy specific products.

4 USER PROFILING FROM BROWSING
ACTIVITY

Little is known about the methods currently deployed to map brows-
ing activity to profiles and, ultimately, to targeted ads. Recent work
has attempted to shed light on such profiling activities to bring some
transparency to the matter. In particular, previous work has found
large correlations between webpages that users visit and the kind of
ads they receive during their browsing activity [3, 21]. The common
theme of those studies were to map both webpages (i.e., their URLSs)
and ads (i.e., their landing pages) to a set of “topics” and to find
correlations between the topics of visited webpages and the ones of
received ads. In other words, webpages and ads are labeled with a set
of topics drawn from a common universe; a user profile is described
by a set of topics defined by the webpages that user visits; a user
(apparently) receives ads labeled with topics that match the ones in
her profile.

Working in such a setting requires defining the universe of topics
and a reliable labeling of webpages and ads. Previous work has
essentially explored two alternatives. On the one side, a URL (be it
a webpage or the landing page of an ad) can be mapped to topics
by analyzing its text [5]. On the other side, labeling can be done
via an ontology, Google Adwords [22] being the most popular one.
‘We note that both options are ill-suited for user profiling from the
perspective of a network observer. Analyzing the content of a web-
page requires knowing the full URL requested by the user, which
is not available when one can only observe the hostnames of TLS
requests. Moreover, analyzing the content of a page may require
time (and resources) and may not even be feasible if the URL refers
to a content delivery network (CDN) or an API service. In fact, using
only the hostname of a URL pointing to a CDN or API is likely to
return no results or to return the homepage of the CDN provider.
During our experiments, 67% of the 470K hostnames visited by our
users returned an error/empty page when we tried to download the
website content. Ontologies represent a lightweight alternative to
content-based labeling. The main problem with ontologies is their
coverage. For example, Google Adwords classifies only 10.6% of
the hostnames in our dataset.

4.1 User Profiling using hostnames

The main challenges in profiling users from the perspective of a
network observer lie in the limited coverage of available ontologies
and the coarse-grained information obtained from TLS requests.
We tackle such challenges by leveraging an unsupervised machine
learning approach that ultimately allows us to assign vector represen-
tations to hostname sequences. The proposed solution is inspired by
representation learning, typically used in Natural Language Process-
ing to assign vector representations (also known as embeddings) to
words carrying information about their usage and meaning. Our sys-
tem learns vector representations of hostnames based on sequences
of hostname requests observed in the network. In the same way the
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meaning of a word can be inferred from the context it is frequently
used in, the profiling-relevant information a hostname carries can
be inferred from other hostnames it is frequently co-requested with.
Based on the learned hostname representations, we can assign a vec-
tor representation to hostname sequences and use those to construct
an accurate user profile.

For instance, while it is a-priori challenging to assign labels to an

API request such as api.bkng.azure.com, having the request co-occur
in the network, across numerous user sessions, with hostnames for
which we do have known labels such as hotels.com, allows us to
learn that api.bkng.azure.com is probably a travel-related API end-
point. Learning these representations across hostnames allows us to
assign profiling-relevant information to users even if, at inference
time, only API calls are observed. The details of the algorithm are
presented below. We would like to emphasize that the algorithm is
fully parallelizable and can be scaled up to requirements, allowing
traffic analysis at line rate.
User Profiling Algorithm. The input data to the proposed repre-
sentation learning algorithm are hostname request sequences across
users in the network over a time interval. At training time, the al-
gorithm learns a vector representation for hostnames that carries
information about the contexts, that is, the other hostnames it has
been co-requested with. The resulting hostname representations
carry information about its use and similarity to all other hostnames
requested in the network. In a second step, the hostname representa-
tions are used to construct a hostname sequence representation which
is then categorized with a k-nearest neighbor algorithm. The reason-
able assumption of the proposed approach is that some hostnames do
have a unique categorization (from the ontology) assigned to them.
It is these categories that are leveraged in the kNN algorithm.

We build our representation learning approach on the SKIPGRAM
model [23], which can be directly related to matrix factorization
methods [24]. While SKIPGRAM was originally proposed to learn
word representations from sets of sentences, we learn representa-
tions of hostnames from sets of sequences of hostnames visited by
a particular user. Intuitively, instead of estimating the likelihood
of sequences of words appearing in a corpus, we aim to estimate
the likelihood of sequences of hosts collected at the network level.
The learning mechanism behind SKIPGRAM leads the learned rep-
resentations for elements in a sequence to be useful for predicting
surrounding elements. In applying this learning framework to se-
quences of hosts visited by users, one would expect the learned
representation for, e.g., facebook.com to be predictive for the host-
name twitter.com, as it is natural for a user to check all her social
networks one after the other [25].

Let H be the set of all the hosts, and let f : H — R4 be the
mapping function, defined as a matrix W of size |H| X d, from hosts
to feature representations (traditionally called embeddings) we aim
to learn. d is an hyperparameter of the model which is related to the
dimensionality of the feature representations. Therefore for every
hostname h € H we can define its embedding as h = one_hot(h)W,
where one_hot(h) is a vector of size |H| whose hth entry is 1 and
all other entries are 0. Given a set of sequences of hosts, a window
of size 2m + 1 is then moved over such sequences and, for each
hostname h. at the center of the window, the negative log likelihood

—log P(hc—m> -+ she—1, heat1, -+ s herm | Be)
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of the hosts in the window given h, is minimized. The modeling
assumption is that the hosts in the context window are mutually
independent given the central hostname h.. This conditional inde-
pendence assumption yields the following optimization problem

sheem | he) = I—[

-m<i<m,i#0

P(hc—ma T P(hc+i | hc)~

)]
Negative sampling, which is closely related to noise contrastive
estimation [26], assumes the probability P(h | h.) is proportional to
the dot product hZh’, where h’ is the context feature representation
of a surrounding host. Similarly, for every hostname h € H we can
define its context embedding as h’ = one_hot(h)W’. By simply
maximizing the L2-norm of the embeddings one could maximize
the dot product for all (context, central) hostname pairs contained in
the window. To avoid this type of degenerate solutions, the negative
sampling objective tries to maximize the likelihood for observed
(context, central) hostname pairs while minimizing the likelihood
for randomly sampled negative (contexty, central) hostname pairs.
Therefore, for each of the windows of size 2m + 1 we seek to
minimize the following log loss function:

she-t, hetr, -

2m
Y. (log otbihl_,, )+ K Y log o(-hihp). @
j=0.7%m he~Pp

where h’,h € R9 are the context and central representations of
hostname h, respectively. K is the number of negative sampled
hosts, which are drawn according to a empirical unigram distri-
bution Pp [23], and o is the sigmoid function. All parameters of the
objective (namely, context and central representations of hosts) are
learned with stochastic gradient descent.

Once the representation learning stage has finalized, we leverage
the resulting feature representations, in conjunction with a subset of
hosts Hy € H for which their categorization is known, to generate
a user profile for each session. Usually, the number of hostnames
for which categories from the given ontology are known Hi, is small
compared to all known hostnames H. Therefore, for all hosts h € Hy,

we know their related categories ch = [c{‘, e ’Clh’ e cg], wherein

clh € [0, 1] refers to the importance of the category i in the hostname

h2, and C is the number of categories.

We define the session sZ = [h1,- -, hy] as the sequence of hosts
visited by user u in the last window of length T. T can then refer
to either a number of hosts (in which case n = T) or to a time
interval. In general, for a given sl{ we know the related categories for
a number of hosts. In the following, we refer to the set of hostnames
contained in s. for which we know their categorization as labeled
set L C H; C H, and unlabeled set U to those hosts for which we
do not know their categories. Note s,f cannot be an empty set since
the profiling algorithm is only executed for users that are currently
browsing the Internet. Moreover, if a host was visited more than one
time during the last window, the algorithm only takes into account
the first visit. This is done to avoid the impact of interactive services
(i.e., video or audio streaming)—where the browser connects to
multiple times—in the final profile.

We propose a method to assign labels to user session that is
both simple and effective. We compute the vector representations

2Note that ¢ is not a probability distribution (i.e., it does not sum up to 1).
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of a session s,f by applying an aggregation function g to the set
of vector representations of the sessions’ requested hostnames. Let
sl =g({h | h € sL})be the aggregated representation of s., our
method computes the N (in this work we set N = 1000) hostname
representations most similar to sg according to a similarity metric
such as cosine similarity. In other words, we use a simple N-nearest
neighbor approach to determine a profile for a given session rep-
resentation. We refer to this set of N hostnames as H ST For each

hostname h € H,r U L (in the following referred as to H SLT) a weight

a,ﬁ’ is computed as follows
1 if hostname h € L
ah h's] . 3)
o otherwise,
IEANILI N

where [x]+ is the positive part of x.
Once the weights aL’ forall h € HfT are computed, the impor-

T
. . S .
tance of category c; in session s,{ , denoted as ¢;*, is computed as
follows:

h h

ZheHLT nH; %u€;
S

“ 4)

—
ZheHLTnHL Ay
Su

T
Since clh € [0, 1], the resulting values cf“ will be also in [0, 1].
Finally, the session s is profiled as

T T T
u

T
Su [Cf

C =

5 EXPERIMENT

To the best of our knowledge, there is no public metric to assess the
accuracy of a profile or to compare different user profiling techniques.
We therefore resort to the Click Through Rate (CTR)—a standard
metric to measure the quality of an advertising campaign, defined
as the percentage of ad impressions that are clicked by users. We
use the CTR of ads picked according to a given profiling algorithm
as a proxy of the quality of the profiles built by that algorithm. We,
therefore, empirically compare the CTR of ads picked according to
our algorithm with ads served by ad-networks.

5.1 Design

A full assessment of our profiling technique would require a complex
setup including (at least) a network observer, such as an ISP, and
some online advertising companies. We design our experiment to
mimic to the maximum extent the real scenario. To this end, we
have developed a Google Chrome extension that is able to monitor
and manipulate browsing sessions, and a back-end that takes care of
profiling users and sending ads selected according to their profiles.

In a nutshell, the extension collects sequences of hostnames vis-
ited by users—as a network observer would do—and reports them
to our back-end. The latter profiles users and select relevant ads by
using the algorithm of Section 4.1. At times, the extensions replace
ads served by ad-networks with the ones received by the back-end,
and reports on which ads the user has clicked.
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Figure 1: The extension detects ads served by ad-networks and
can replace them with ads received from our back-end.

5.2 Execution

Recruitment. We started our recruitment phase by uploading the
extension to the Google Chrome Store and by creating a website.
The study was announced by the Spanish internet user association
(AULI in the following) of the country of one of our institutions, on
popular online forums and via Facebook advertising. The declared
goal of the study was to better understand online advertising and
its privacy implications. Participants were requested to be at least
18 years old and to use Google Chrome as their main browser. As a
compensation, participants were given the opportunity of entering
a monthly raffle for an iPhone X as long as they would browse the
‘Web with our extension installed on their browsers. By the end of
the study, 5 iPhones were awarded.

All participants were informed (and gave explicit consent) of the

data collected, and the implications of our experiment (user profiling
and injection of ads on visited websites). All forms provided to
participants as well as the extension were examined and approved by
AUL The recruitment phase ended after reaching 1000 participants.
It lasted 2 months. We witnessed further installations of the extension
after the recruitment phase ended, and we totaled 1329 installations
by the end of the experiment.
Data Collection. Right after the recruitment campaign, we started a
data collection phase that lasted for three months. During this phase
we mainly collected (i) the sequence of hostnames visited by the
users and (ii) the ads they received.

The sequences of hostnames were used to train the machine
learning model presented in 4.1 and fine tune the whole process for
the User Profiling phase.

The ads collected during this phase populated the database of

ads/creatives to be used in the final phase of the experiment. They
were manually filtered to remove ads not properly downloaded
(at times, the extension failed to capture a creative using dynamic
HTMLY) or offensive (e.g., ads of porn websites). After filtering, we
were left with a database of roughly 12K ads.
User Profiling. The final and most important phase of the experi-
ment lasted one month. During this time we (i) profiled users from
the hostnames they requested, (ii) served ads according to those
profiles, and (iii) measured the CTR of displayed ads.
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During the last phase, the extensions periodically reported to the
back-end the sequence of hosts visited by the user during the last
10 minutes. The back-end generated a profile with the sequence of
hostnames visited by that user in the past 20 minutes, and used our
ad database to create a list of the most relevant ads for that profile.
The list was sent to the extension. (More details about profiling and
ad selection can be found in Section 5.4.) Finally, the extension
replaced some of the ads served by ad-networks with ads from the
received list, during the following 10 minutes. Figure 1 shows a
webpage where two ads were replaced. The extension also reported
to the back-end the ads that were clicked by the user.

5.3 Ads

Throughout the experiment we have witnessed more than 600M
connections to more than 470K unique hostnames, and almost 2.4M
ad impressions.

During the last month of our experiment users were shown two
types of ads. In some cases, users were shown “Original” ads, that
is, those served by ad-networks. Note that we are not aware of the
algorithms used by ad-networks to serve a particular ad and, in
particular, we do not know whether user profiles built by ad-network
include data such as IP address, time, or other information gathered
thorough other sources. We also stress that we did not ask user
to clear cookies at any time throughout the experiments (hence,
they may have done it if there were used to do so) to avoid any
interference with the profiling activities of ad-networks. In other
cases users were served “Eavesdropper” ads, that is, those chosen
by our system—according to the user profile—from the database of
ads we had built during the data collection phase.

For each report received from the extension, our back-end served
20 eavesdropper ads. For each ad detected, the extension replaced it
with an eavesdropper ad only if one of the ads in the replacement list
had a size similar to the size of the original ad. If no ad had similar
size, the original creative would not be replaced.

5.4 Relevant ad selection

Finally, we describe the process we followed to obtain the most
relevant ads from a sequences of hosts visited by a user. The core
of the process, that is, the general algorithm used to profile users is
explained in Section 4.1. However, in this section we describe the
design decisions that were taken specifically for this experiment.
Mapping hostnames to topics. Our profiling algorithm requires an
initial set of labelled hostnames—referred to as Hy, in Section 4.1.
Similar to previous work [3, 4], we used the Display Planner tool
of Google Adwords for this task. We instrumented a Web Browser
using Selenium to query the Display Planner for the topics associated
to the hostnames visited by our users. In total, we collected the topics
associated to roughly 50K of the hostnames visited by the users or
included in the landing page of one of the ads they received.
Google Adwords provided us with 1397 different categories/topics
associated in a hierarchy that goes from more general categories
to the most specific ones. The number of levels of the hierarchy is
different for each one of the top categories. For instance, category
Telecom only has two subcategories, while category Computers &
Electronics has 123 subcategories organized in a 5-level hierarchy.
In order to harmonize the number of sub-categories and to reduce
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the overall number of categories taken into account, we decided to
use only categories up to the second level of the hierarchy. As a
result, 328 categories —this is the set C of Section 4.1— are used to
generate the categorization " for each hostname h € H .
Filtering hostnames. A first inspection to the hostnames usually
visited by the users showed that some of the most popular ones
belong to advertisers or tracking companies. Roughly 50 of the top
100 hostnames we witnessed are known to belong to one of those
companies.

We decided not to use those hostnames for profiling since they add
noise without providing any valuable information about the interests
of a user. In order to identify those hostnames we used three different
lists designed to block tracking and advertising traffic. Those lists
are provided by adaway.org3, hosts-file.net* and yoyo.org5 .

Roughly 3K different hostnames included on these lists were

visited by our users. Moreover, 6.1M out of the more than 75M
connections witnessed during the user profiling phase were to one
of those hostnames. It represents more than 8% of the connections
captured by the extension.
Training the algorithm. As described in Section 4.1, our algorithm
for session profiling is built on the SKIPGRAM model. Our aim is to
demonstrate the usability of the whole system and not the fine tuning
of the model that may work best with different hyperparameters
in difference circumstances (i.e., we expect the need of a bigger
window size in a fixed network where users use a browser, compared
to a mobile network scenarios where users tend to use more apps),
thus, we use the default hyperparameter values of the popular imple-
mentation GENSIM [27]: the embedding dimension d is set to 100,
the window size to 5 (m = 2) and the number of negative sampled
hosts K to 5. For all other hyperparameter values, please refer to
such implementation.

We update our model every day. To this end, we obtain from
our database the sequence of hosts visited by all the users during
the whole previous day. (The amount of data used for training is
configurable, however, one day of data has provided good empirical
results for different use cases.) We use all that sequences to train a
new model that we immediately start using to calculate profiles.
Selecting the best ads. Finally, we execute our profiling algorithm
every time a user sends new data to the server. After the new data
is included in the database, we obtain the sequence of hosts visited
by the user during the last T minutes. As in the case of the amount
of data used for training, the amount of data used for profiling is
also configurable. For this experiment we set T = 20 minutes. This
value was empirically tested as a good trade-off between very short
sessions that may led to non meaningful profiles and very long ones
that may include topics that are not relevant anymore for the user.

Our profiling algorithm characterizes the session sZ with a value
between 0 and 1 for each one of the 328 possible categories. The
categorization of the session, denoted as cSu , is used to retrieve a
number of related ads a user might be interested in. To do so, we

. T . .
compute the 20-nearest neighbors of ¢« (according to Euclidean

3https://adaway .org/hosts. txt

“https://hosts-file.net/adervers. txt

5https://pgl. yoyo.org/adservers/serverlist. php ?hostformat=hosts&showintro=
0&mimetype=plaintext


https://adaway.org/hosts.txt
https://hosts-file.net/ad_servers.txt
https://pgl.yoyo.org/adservers/serverlist.php?hostformat=hosts&showintro=0&mimetype=plaintext
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Figure 2: User diversity (hostnames). We identify cores of host-
names visited by large fractions of users (e.g., Core 80 is the set
of hostnames visited by at least 80% of the users) and show the
CCDF of the number of visited hostnames outside of each core.
The dashed line shows the CCDF of the total number of visited
hostnames. For reference, we also report the size of each core:
Core 80, 60, 40 and 20 have sizes 30, 120, 271 and 639, respec-
tively.

distance) from the pool of hosts for which we know their categoriza-
tion, previously denoted as Hy . We then select ads for each of the
closest hosts and serve such ads to the user for the next 10 minutes.

6 RESULTS

In this section we analyze the results obtained during the one-month
profiling period of our study. During this phase, we witnessed 75M
connections to 470K hostnames; users received 270K ads and we
replaced 41K of them.

6.1 User Diversity

The first question we try to answer is whether visited hostnames
provide any insights on user profiles. During our data collection,
a few hostnames (e.g., ones related to Google or Facebook) were
extremely popular. If all users visit the same set of hostnames, then
browsing habit is probably not a good discriminant for user interests.
To shed light on this matter, we try to identify cores of hostnames
visited by large fractions of users, and then compute how many users
visit hostnames outside of those cores. In a nutshell, hostnames in
a core are essentially background noise while hostnames outside
of a core are the ones that allow a profiler to tell user interests.
Figure 2 shows the CCDF (survival function) of the number of
visited hostnames outside of a set of cores. We use “Core XX to
denote the set of hostnames visited by at least XX% of the users;
for example, “Core 80” is the set of hostnames visited by at least
80% of the users. Further, the dashed line of Figure 2 shows the
CCDF of the total number of visited hostnames. The figure shows
that 75% of the users (the dashed black line represents all the users)
visit at least 217 hostnames and one fourth of them visit up to 1015
different hostnames. Roughly 25% of the users have visited at least
985 hostnames outside Core 80; similarly, 75% of them have visited
at least 191 hostnames outside Core 80.

We repeat the experiment on cores by using categories in place of
hostnames. This is because profiles are eventually computed from
website categories—hence heterogeneity of user profiles should be
assessed based on website categories rather than websites. Similar
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Figure 3: User diversity (categories). We identify cores of cate-
gories assigned to large fractions of users (e.g., Core 80 is the
set of categories assigned to at least 80 % of the users) and show
the CCDF of the number of visited categories outside of each
core. The dashed line shows the CCDF of the total number of as-
signed categories. For reference, we also report the size of each
core: Core 80, 60, 40 and 20 have sizes 47, 80, 124 and 177, re-
spectively.

to the previous experiment we identify cores of categories—that is,
categories assigned to a large fraction of users—and try to under-
stand how many users are assigned categories outside of such cores.
Figure 3 shows the CCDF of the number of categories visited by
users outside of different cores.® That figure shows that all users
in our experiment are assigned the same 14 categories. Such cat-
egories have no profiling value as they provide no information to
discriminate one user from another. Those common categories are
the ones assigned to very popular hostnames such as google.com
or facebook.com. Further, 50% of the users are assigned with the
same 113 categories out of the 348 possible. Finally, 1,5%, 5,2%,
11,1% and 23,2% of the users are not assigned with a single category
outside the cores 80, 60, 40 and 20, respectively.

6.2 Qualitative analysis of the embeddings

The accuracy of the profiling system heavily relies on the algorithm
described in Section 4.1. Here we provide insights on the results
produced throughout our profiling experiment.

For the sake of visibility, we focus on data (i.e., visited hostnames)
collected during a single day. Further, we only use second-level
domain names instead of complete hostnames. For example, given
hostnames mail.google.com or ds-aksb-a.akamaihd.net, we only
consider google.com or akamaihd.net, respectively. With such design
choices, we reduce the number of points in our space from roughly
470K to less than 3K. We stress that the strategy just described is
only used to improve the readability of the current section (and its
figures), whereas all other experiments used the complete one-month
dataset and considered full hostnames.

®Differently from Figure 2, in Figure 3 we use a linear scale for the X axis. This is
because when mapping hostnames to categories, we shrink the set from more than 400K
hostnames to 328 categories.
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Figure 4: t-SNE (2 dimensions) representation of the embeddings obtained for each of the hostnames visited by users. A zoomable

version is available at https://bit.ly/2LMOEP2.

Finally, we apply the t-SNE’ [28] algorithm over the embeddings
in order to reduce the dimensionality of our space from 100 to 2
dimensions.

Figure 4 shows a 2D representation of the embeddings. Each
circle represents the embedding of a second level domain and its
center is the position of that embedding in the space after applying
t-SNE. The size of a circle is proportional to the number of users that
visited the corresponding domain. A link between two circles means
that the two domains were co-requested, i.e., visited one after the
other by at least one user; the thickness of the link is proportional to
the number of users that co-requested the two domains. A zoomable
version of Figure 4 can be found at https://bit.ly/2LMOEP2.

Figure 5 magnifies three areas of Figure 4. We have chosen those
three areas as they serve as clear examples of how the algorithm is
able to learn similarities among hostnames.

The top rectangle (marked with a red 1) focuses on a set of very
clustered hostnames. A closer look reveals that they are porn-related
websites. Our algorithm identifies those hostnames as similar even
when most of them were not co-requested (i.e., spankwire.com and

7The t-SNE algorithm is a technique for dimensionality reduction that is particularly
well suited for the visualization of high-dimensional datasets.
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livejasmin.com were co-requested, but they were never co-requested
with any other of the hostnames in the cluster.).

The second rectangle (marked with a red 2) focuses on a small
area in the middle of our representation space that includes host-
names such as rojadirecta.me, arenavision2018.tk, directvplay.com
or foxplay.com. All these hostnames stream sport events (both in
a legal or illegal way). We speculate that our algorithm could be
used to identify websites hosting illegal streaming websites as those
services frequently move to new hostnames in order to evade justice.

Finally, the third rectangle (marked with a red 3) presents an
intricate case. It magnifies an area in the center of the representation
space with lots of hostnames close to each other. The right part of the
area shows websites like atrapalo.com, skyscanner.es, ryanair.com,
vueling.com or lastminute.com. All of them are traveling-related
websites. However, in this area we also find websites not related to
traveling like betfair.es (a betting website) or enterat.com (a Spanish
web portal). A closer look at the data reveals that such result is an
artefact of dimensionality reduction via t-SNE: the similarity matrix
for the area under examination—using all of the 100 dimensions—
shows that travel-related hostnames are far from the other hostnames.
Finally, the third rectangle also shows that our algorithm can cluster
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Figure 5: Example of clusters of hostnames present in Figure 4:
cluster 1 includes porn-related websites, cluster 2 includes web-
sites used to watch sport events, and cluster 3 includes travel-
related websites.

embeddings of hostnames visited by specific user demographics (in
this case, Spanish users).

6.3 Hostnames and Ads Analysis

We analyze the topics of the hostnames requested by our users and
compare them with the topics of the ads served by both our system
and ad-networks. We only take into account hostnames or ads for
which Google Adwords returned an answer (roughly 50K out of
470K among hostnames of visited webpages and ads).

Figure 6 shows the percentage of hostnames requested and ads re-
ceived for each topic across one month. As explained in Section 5.4,
we use the first two levels of the hierarchy provided by Google
Adwords, thereby considering 328 different topics. Nevertheless,
Figure 6 only uses top-level topics (34 in total) to ease readability.

Figure 6a shows that hostname topics like Online Communities,
Arts & Entertainment, People & Society or Jobs & Education are very
prominent and stable across time. A closer look at our data reveals
that very popular websites like Facebook or YouTube are labelled
with those topics. While very popular, those hostnames carry little
information for a network observer because such websites provide
very diverse services and attract a wide range of user types. For
example, on YouTube one may find food recipes as well as reviews
of electronic goods. The sole indication that a user is browsing
YouTube is simply not enough to tell that user interests.

Figure 6b and Figure 6¢ shows that ads served by our system and
those served by ad-networks belong to different categories. This may
partially be explained by the fact that ads served by ad-networks
include also premium ads, retargeting, massive campaigns, etc. Also,
the fact that topics of ads by ad-networks change over time may
be explained by the occurrence of ad campaigns. Finally we note
that topics that are prevalent in Figure 6a are not so popular in
Figure 6b and Figure 6¢. This is because Figure 6a shows the number
of connections to a webpage and one visit to pages like YouTube
generates many connections.
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(c) Ads selected by our algorithm
Figure 6: Topics of the websites visited or the ads received by
users per day.

6.4 Click Through Rate

Finally, we compare the CTR of ads served by our system with the
one of ads served by ad-networks. Ads served by our system show a
CTR of 0.217% whereas ads served by ad-networks have a CTR of
0.168%.

One may wonder whether a CTR around 0.2% is any good. We
note that little is known about actual CTRs of ad-campaigns. Several
specialized blogs report CTRs between 0.07% and 0.84 [29-31].
Our results (for both ads served by our systems and ads served by
ad-networks) are within the lower part of this range. There could be
different reasons for this. One possible reason is the bias induced
by our sample of the population (mainly young people willing to
install an extension on their browser). Another reason may be the
pervasiveness of ad-fraud [32] that amplifies CTRs of ad-campaigns.
Statistical significance. We use hypothesis testing to determine
whether our results bear statistical significance. As our study par-
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ticipants received both types of ads (the ones sent by ad-networks
and the ones picked by our profiling algorithm) we used a two-tailed
paired t-test with p < .05 to assess the mean difference of CTRs. Re-
sulting p-value was .11333 so we conclude that there is no statistical
difference between the mean CTR of ads provided by ad networks
and the mean CTR of ads shown according to our profiling algo-
rithm. In other words—and if we assume CTR to be a meaningful
proxy of profiling quality—we can argue that profiling activity by
a network observer may produce profiles that are as “good” as the
profiles available to ad-networks or OTT.

7 DISCUSSION
7.1 Limitations

Our sample of participants may not be representative of the popula-
tion of Internet users—a common problem of studies with real users.
Yet, we consider our results to constitute evidence of the profiling
ability of networks eavesdropper.

Another limitation of our experiment is the set of ads we used.
The latter was built during the data collection phase and was used to
serve ads during the profiling phase. Hence, the set was static and
some ads could have become outdated at the time they were served.
Differently, the set of ads served by ad-networks is ever-changing
and up-to-date.

Finally, we used CTR to compare profiles that could be built by
an eavesdropper and the ones available to ad-networks. Nevertheless,
some ad-campaigns could be optimized to improve metric like final
revenue rather than CTR.

7.2 Real world observations

Our study assumes that a network observer can obtain all hostnames
a user visits. Here we discuss to which extent such assumption holds
in real-world deployments.

HTTPS and QUIC. Both HTTPS and QUIC leak to a network ob-
server the hostname requested by the user in the Server Name Indi-
cation (SNI) field. Even if the SNI field is sent during the handshake
and the connection may be long lasting, an eavesdropper may obtain
the hostname of the server (by tracking the TCP flow in HTTPS or
checking the UDP datagrams of QUIC). Note the algorithm used
in our experiment does not consider multiple requests to the same
hostname, thus, our experiment perfectly mimics the information a
network observer could obtain when by observing HTTPS or QUIC
traffic. New protocols like TLS 1.3 may use encrypted SNI but do
not hide the IP address that may be used by the profiling algorithm.
Multiple Users. If requests for hostnames generated by different
users are ascribed to a single one, the profiling accuracy is clearly
affected. The ability of an eavesdropper to tell apart traffic generated
by multiple users depends on its position in the network. A WiFi
provider could match each requested hostname to a device by using
MAC addresses. A mobile provider would separate traffic per user
by leveraging MSISDN or IMSI identifiers. Differently, a landline
ISP may not be able to tell apart traffic generated by multiple users
behind the same NAT device (e.g., a domestic router).

DNS providers. A DNS provider may actually act as a profiler
since it learns the hostnames requested by a user via DNS requests.
Techniques like DoH or DoT limit the visibility of network and VPN
providers to the IPs connected by the user unless they use some
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complex system[33]. However, they would not prevent the DNS
provider itself from learning the hostnames a user visits.

7.3 Using profiles

Even if TLS prevents an eavesdropper from injecting ads into the
connection, we argue that profiling users could still be a lucrative
business for network observers. The ad industry is fragmented in
hundreds of companies that do business even without a direct channel
with the final user. Profiles could be sold to third parties or direct ads
could be sent via email or SMS messages. Finally, we note that many
ISPs are entering the online advertising business [34, 35] and may
leverage their unique perspective to create accurate users profiles.

7.4 Countermeasures

Most anti-tracking applications try to fight the profiling activities of
ad-networks and over-the-top providers. This is usually achieved by
blocking connections and cookies towards domains that belong to
trackers and other stakeholders of the targeted advertising ecosystem.
This mechanism is not effective against potential profiling activity of
a network eavesdropper that simply leverages the hostnames a user
requests. This information is leaked despite TLS and, as we have
argued above, upcoming patches like encrypted SNI are not likely
to solve the issue. We do not consider VPN as a valid solution as it
simply shifts the threat from the WiFi provider or ISP to the VPN
provider. Preventing leaks to a network observer requires tools like
TOR. Nevertheless, TOR is not immune to weaknesses that expose
the privacy of its users [36, 37] and it has a performance/usability
penalty that not all users or application may tolerate.

8 CONCLUSIONS

User profiling for targeted advertising is raising concern among
researchers and Internet users. However, most research activity and
privacy-enhancing apps like ad-blockers focus on profiling by ad-
networks and over-the-top providers. There seems to be little interest
in what is leaked about a user browsing activity to network observers,
and this may be because of the pervasiveness of TLS.

In this paper we have shown that a network observer can effec-
tively build user profiles by leveraging information leaked by TLS
connections. In particular, we introduce an algorithm inspired by
natural language processing to infer the relevant topics of a website,
even when its hostname is not categorized by available ontologies.
Further, we have provided evidence that the quality of the profiles
that can be built using only network information is comparable to
the quality of profiles available to ad-networks. This task was carried
out by means of a 6 month experiment involving more than 1.3K
users.

Our findings show that user profiling by network eavesdroppers is
effective despite TLS. This is especially worrisome as anti-tracking
tools such ad-blockers are not effective against a network observer
whereas countermeasures like TOR incur in a performance and
usability penalty.
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