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ABSTRACT
This paper aims to stir debate about a disconcerting privacy issue
on web browsing that could easily emerge because of unethical
practices and uncontrolled use of technology. We demonstrate how
straightforward is to capture behavioral data about the users at
scale, by unobtrusively tracking their mouse cursor movements,
and predict user’s demographics information with reasonable accu-
racy using five lines of code. Based on our results, we propose an
adversarial method to mitigate user profiling techniques that make
use of mouse cursor tracking, such as the recurrent neural net we
analyze in this paper. We also release our data and a web browser
extension that implements our adversarial method, so that others
can benefit from this work in practice.

CCS CONCEPTS
• Security and privacy → Human and societal aspects of se-
curity and privacy; • Human-centered computing → Human
computer interaction (HCI).
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1 INTRODUCTION
In the modern Web, privacy is becoming a rare commodity. The
recent proliferation of intrusive and privacy-invasive ads has raised
serious concerns among users and industry regulatory bodies, with
initial user reaction reflected on the swift adoption of ad blocking so-
lutions. In fact, most of the popular browser extensions for Mozilla
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Firefox are related to ad blocking and user privacy.1 While exten-
sions like these have been successful in mitigating the user’s expo-
sure to web tracking, they eventually hurt web revenue streams,
leading to the so called “tragedy of the commons” [54], where the
common resource (user attention) will be depleted due to ad block-
ing. Luckily, some effort has been put to regulate the web tracking
landscape, like self-initiatives from the ad industry that include
recommendations for good practices [18] and transparency tools
such as AdChoices,2 to help users understand why they receive spe-
cific ads. Along the same line, privacy-preserving web browsers3
allow users to have more control of their online privacy and, at
the same time, a financial incentive by the ads that they receive
while surfing the web. Moreover, in 2018 the European Union set
in place the new General Data Protection Regulation (GDPR) [96]
and the state of California in United States enforced the Consumer
Privacy Act [73]. Other countries are also following the same route,
yet currently online advertising is ubiquitous. Also, it remains the
dominant monetization model on the Web, with constantly increas-
ing growth rates and revenues. This has promoted advancements
in user tracking and profiling technologies that allow to serve more
relevant ad content to the user, and at a higher premium, known as
targeted ads or Online Behavioral Advertising [14, 21].

Web tracking and user profiling rely on mechanisms to uniquely
identify and track the user’s online behavior over time, including
e.g., geolocation, visited pages, search keywords, and social net-
work activity. All of these in order to better understand the user
intentions and interests. However, a less known method to profile
the user is by means of mouse cursor tracking. This technology has
been used successfully to inform usability tests [10], predict user
engagement [5] and intent [32, 66], detect searcher frustration [30],
and infer user attention to parts of a web page [6], among other
tasks. Unfortunately, because mouse cursor tracking can be per-
formed unobtrusively [58] and at scale [41], it has opened the door
to a brand new wave of massive tracking campaigns and companies
that hide behind laudable objectives, such as providing fine-grained,
in-page analytics (e.g., hovered and clicked items, scroll reach, speed
of browsing) to the website owners. Interestingly, by tracking the
mouse cursor it is possible to profile the user demographics, namely
predicting age [104, 105] and gender [50, 78], a piece of valuable
personal data that most users are unaware of [20]. With this pa-
per, we want to raise awareness about this fact and reflect on the
trade-offs between privacy and technological innovation.

1https://addons.mozilla.org/en-US/firefox/search/?promoted=recommended&sort=
users&type=extension
2http://youradchoices.com/
3See https://brave.com/ and https://cliqz.com/

ar
X

iv
:2

10
1.

09
08

7v
1 

 [
cs

.H
C

] 
 2

2 
Ja

n 
20

21

https://doi.org/10.1145/3406522.3446011
https://doi.org/10.1145/3406522.3446011
https://doi.org/10.1145/3406522.3446011
https://addons.mozilla.org/en-US/firefox/search/?promoted=recommended&sort=users&type=extension
https://addons.mozilla.org/en-US/firefox/search/?promoted=recommended&sort=users&type=extension
http://youradchoices.com/
https://brave.com/
https://cliqz.com/


We investigate and highlight privacy issues that may emerge
because of unethical practices and unregulated use of mouse cursor
tracking technology. Our contributions begin with an extensive
survey of related work on privacy and security while online, and
continue with research that performed user profiling via mouse
cursor data. We then show how straightforward it is to capture
behavioral data and predict demographics information with reason-
able accuracy using a few lines of code. Based on our results, we
present an adversarial method to mitigate user profiling techniques
that make use of mouse cursor tracking, such as the recurrent
neural net we propose in Section 3.6.2.

2 SURVEY OF RELATEDWORK
To what extent does our online activity reveal who we are? Existing
literature related to online privacy provides insights around topics
such as information leakage while surfing the web using desktop
computers [60, 82, 91, 99] or mobile devices [61, 83]. Other studies
report on the entities that collect tracking data [12, 92] and how
tracking data are being collected [2, 76]. Overall, this large body of
work demonstrates that the digital footprints left by individuals,
as they browse websites, may help derive with alarming accuracy
personally identifiable information like gender, age, location, or
even political orientation. Recent work by White et al. [100] and
Gajos et al. [31] could detect neurodegenerative disorders from
mouse cursor movements, showing how our “digital phenotypes”
could be used as adjunctive screening tools. In this section, we
report current evidence on privacy risks in the online setting, as
well as predicting demographic attributes from online digital traces.

2.1 Privacy Issues in Web Browsing
There are many ways for tracking the online activity of web users,
for example by monitoring the IP addresses or using fingerprinting
techniques [1, 45, 70]. However, the cookie-based approach remains
to this day the dominant one, since it is fully supported by all web
browsers. With a cookie identifying the user’s browser, a third party
domain can track the user activity across websites using redirection
techniques or providing a free service that makes cross-domain
tracking possible, such as the Facebook ‘Like’ button or social media
sharing plugins for WordPress. Then, by analyzing the content of
the browsed websites, the tracking domain can effortlessly – and
at an unprecedented scale – derive users’ intentions and interests,
alongside with other sensitive profiling information [43, 84].

There is a plethora of work that capitalize on user profiling based
on how we browse. For example, our browsing history is used to
detect targeted ads [21, 77] or even identify which attribute or user
action triggered a specific ad [55, 101]. Olejnik et al. [75] noticed
that, with just 4 visited websites, it is possible to uniquely identify
users in 97% of cases. At the same time, Web users are concerned
about third-party tracking [68], especially about location access and
inferring demographics [102]. Researchers have found that people
are likely to take actions to protect their privacy [65], including the
payment of a premium fee if needed [94]. And while some websites
and tracking companies inform users about their data practices
through privacy policies and sometimes provide opt-outs [85], these
measures are insufficient.

Today, advancements in web advertising provide new opportuni-
ties to trackers and advertisers to extend their visibility. Online ads
are rendered dynamically during the load time of the browsed web-
site, most of the time as a result of additional (tracking) JavaScript
code that is injected on the fly [44]. This opens the door to more
sophisticated tracking techniques, among which we find mouse
cursor tracking to be an underestimated one. In the following sec-
tion, we highlight how this technology has been used in various
scenarios and how pervasive it has become. In fact, today most web-
sites include analytics scripts, and a large number of them contains
some mouse tracking script [29].

Users consider ad targeting useful because it highlights relevant
information, but at the same time they find the underlying data
collection alarming [97] and invasive [67]. Plane et al. [79] found
that users were more concerned if an ad was targeted based on
demographics, such as age, gender, or race, than based on inter-
ests. Overall, users do not want targeted advertising when they
are made aware of the data collection methods employed by the
advertisers [95], and consider targeting based on demographics to
be discriminatory [93]. We, therefore, hypothesize that it could be
possible to derive demographics information from mouse move-
ments at scale, and that a privacy issue may emerge if people follow
unethical practices and make an uncontrolled use of the technology.

2.2 Mouse Cursor Tracking
What can a mouse cursor tell us more? Almost 20 years ago Chen et
al. [22] raised this question and found a relationship between gaze
position and cursor position during web browsing. Mueller and
Lockerd [71] investigated the use of mouse tracking to visualize
and (manually) infer the users’ interests. Since then, researchers
have noted the utility of mouse cursor analysis as a low-cost and
scalable proxy of eye gaze [39, 72]. Several works have investigated
closely the utility of mouse cursor data in web search [6, 24, 63] and
web page usability evaluation [9, 10, 56], two of the most prominent
use cases of this technology. Mouse biometrics is another active
research area that has recently shown how to identify an individual
by analyzing their mouse movements in controlled settings [51, 64].

The construct of attention has nowadays become the common
currency on the Web. Objective measurements of attentional pro-
cesses are increasingly sought after by the media industry, to ex-
plain or predict user behavior. With every click or online interac-
tion, digital footprints are created and logged, providing a detailed
record of a person’s online activity that can be used for market seg-
mentation, targeted advertising, but also for more privacy-invasive
applications like user profiling.

Early mouse cursor tracking systems began by logging click
events only (coordinates and timestamp) and using these events to
assess what information users were interested in. However, it was
soon realized that click data provide an incomplete picture of user
interaction. Click data informed researchers of a users’ primary fo-
cus of attention, or their end choice. However, a mouse click is often
preceded by several interactions such as scrolling, hovers, move-
ments, etc. and thus can lead to a better overall understanding of the
user’s thought process. This way, mouse cursor tracking systems
began to incorporate such fine-grained within-page interactions to
create richer user models.



In what follows, we review research efforts that have focused on
mouse cursor analysis to infer user interest, visual attention, emo-
tions, and demographic variables like gender or age, on a desktop
setting. We thus deliberately leave out works on user profiling in
mobile browsing, which fall outside the scope of this paper.

2.2.1 Inferring User Interest. For a long time, commercial search
engines have been interested in how users interact with Search
Engine Result Pages (SERPs), to anticipate better placement and
allocation of ads in sponsored search or to optimize the content lay-
out. Early work considered simple, coarse-grained features derived
from mouse cursor data to be surrogate measurements of user inter-
est [25, 87]. Follow-up research transitioned to more fine-grained
mouse cursor features [32, 33] that were shown to be more effec-
tive. These approaches have been directed at predicting open-ended
tasks like search success [36] or search satisfaction [63]. In a similar
vein, Huang et al. [40, 41] modeled mouse cursor interactions and
extended click models to compute more accurate relevance judge-
ments of search results. Mouse cursor position is mostly aligned
to eye gaze, especially on SERPs [34, 90], and that can be used as a
good proxy for predicting good and bad abandonment [28].

2.2.2 Inferring Visual Attention. Mouse cursor tracking has been
also used to survey the visual focus of users in sponsored search,
thus revealing valuable – and at the same time sensitive – infor-
mation regarding the distribution of user attention over the vari-
ous SERP components. Despite the technical challenges that arise
from this analysis, previous work has shown the utility of mouse
movement patterns to measure within-content engagement [4] and
predict reading experiences [5, 37]. Lagun et al. [52] introduced
the concept of motifs, or frequent cursor subsequences, in the esti-
mation of search result relevance. Similarly, Liu et al. [63] applied
the motifs concept to SERPs and predicted search result utility,
searcher effort, and satisfaction at a search task level. Boi et al. [16]
proposed a method for predicting whether the user is looking at
the content pointed by the cursor, exploiting the mouse cursor data
and a segmentation of the contents in a web page. Lastly, Arapakis
et al. [6, 8] investigated user engagement with direct displays on
SERPs and provided further evidence that supports the utility of
mouse cursor data for measuring user attention at a display-level
granularity.

2.2.3 Inferring Emotional State. Although the connection between
mouse cursor movements and the underlying psychological states
has been a topic of research since the early 90s [3, 19], some studies
have investigated the utility of mouse cursor data for predicting
the user’s emotional state. For example, Zimmermann et al. [106]
investigated the effect of induced affective states on the motor-
behavior of online shoppers and found that the total duration of
mouse cursor movements and the number of velocity changes were
associated to the experienced arousal. Kaklauskas et al. [48] created
a system that extracts physiological and motor-control parameters
from mouse cursor interactions and then triangulated those with
psychological data taken from self-reports, to analyse correlations
with users’ emotional state and labour productivity. In a similar
line, Azcarraga et al. [11] combined electroencephalography signals
and mouse cursor interactions to predict self-reported emotions
like frustration, interest, confidence and excitement. Yamauchi et

al. [103] studied the relationship between mouse cursor trajectories
and generalized anxiety in human subjects. Lastly, Kapoor et al. [49]
predicted whether a user experiences frustration, using an array of
affective-aware sensors.

2.2.4 Inferring Demographics. Yamauchi et al. [104] examined the
extent to which mouse cursor movements can help identify the
gender and the experienced feelings of users who were watching
short film clips. Although this work provides early evidence on
the utility of mouse cursor data for advanced online user profiling,
it suffers from certain limitations that we address in this work.
First, the experimental setting has limited generalizability, since
the adopted perception task is not very well connected to typical
activities that users perform online, such as web search. Second,
the data used in their predictive modeling task include multiple
samples per participant randomly assigned to the training and
test data partitions, hence there may be information leakage that
artificially inflated model performance. In our analysis, we limit
the training samples to exactly one mouse cursor trajectory per
participant and test our models on unseen individuals.

Kratky et al. [50] recorded mouse cursor movements in an e-
commerce website and engineered a set of meta-features to predict
the user gender and age group. Their classifier was trained on
several days of data per participant. Although the training and test
collections had disjoint sets of participants, it was stated that the
reported results were overly optimistic since researchers could not
verify their ground-truth data [50]. In contrast, as discussed later,
our dataset was collected from high-quality crowdworkers so we
are confident that the ground-truth information is correct.

In a similar vein, Pentel et al. [78] used data from six different
external sources, including e.g., keystroke data and feedback ques-
tionnaires, and handcrafted features proposed in earlier works [25,
28, 87] to train predictive models that could identify the users’ age
and gender. However, because their approach relies mainly on ad-
hoc data, it is less scalable and more difficult to implement than
the approach we propose in this paper, which takes as input raw
mouse cursor data. Moreover, Pentel et al. reported optimistic per-
formance scores, which may be due to information leakage across
data partitions, and omit important classification metrics such as
precision, recall, and AUC. To account for their modeling approach,
as well as that proposed by Kratky et al. [50], we implement the
same classifier and test it in our setting (see Section 4).

2.3 Summary
Websites can infer fine-grained information about the users by
tracking their mouse cursor activity. Tracking where exactly on the
page a user’s mouse cursor hovers or clicks provides a surrogate
signal for gaze fixation, and therefore reveals the focus of attention,
which can be used to learn the users’ latent interests. However,
the research literature on mouse cursor tracking has pointed out
far more advanced and creative use cases for this technology. The
above studies demonstrate that certain cognitive and motor control
mechanisms are embodied and reflected, to some extent, in our
mouse cursor movements and online interactions. In other words,
mouse cursor movements can disclose sensitive information that
may be employed for advanced user profiling, such as the identi-
fication of demographics, personality traits, and browsing intent.



For brevity’s sake, in the remainder of this paper we will focus
on predicting demographics (age and gender) from mouse cursor
movements, but we argue that other, potentially sensitive informa-
tion may remain vulnerable and could be exposed if appropriate
mechanisms are put into place.

3 STUDY
We ran an online user study a few years ago that reproduced the
setting of a sponsored search task [57]. In order to make this paper
self-contained, we will describe here the data collection procedure
in enough detail to allow reproducibility of our work, nevertheless
the reader may consult our reference paper [57] for more details.

Sponsored search provides the necessary revenue streams to
commercial web search engines4 and it is critical to the success
of many websites [46]. Commercial web search engines resort to
various tracking techniques to monitor their users’ search activity,
including mouse cursor tracking [27, 39, 41], and use that informa-
tion to offer item recommendations [90], targeted advertising [13],
or simply sell it to third parties [69].

With this work, we critique the use of mouse cursor tracking
technology, highlighting possible implications for the future of the
online advertising industry. More specifically, our user study al-
lowed us to capture in a non-invasive manner the mouse cursor
interactions of users who performed simple web search tasks. The
collected mouse cursor data was then used to benchmark state-of-
the-art machine learning models’ capacity to infer users’ demo-
graphic attributes.

3.1 Design
Our experiment, which was approved by a team of legal experts,
consisted of a brief transactional search task [17] that was com-
pleted once per participant. Participants were presented with a
simulated information need that explained that they were inter-
ested in purchasing a present for them or a friend, and were asked
to use Google Search to find something appealing. Each participant
was provided with a predefined search query and the correspond-
ing SERP (see Figure 1) and were asked to click on any element
of the SERP that answered it best. This way, we ensured that par-
ticipants interacted with the same pool of web search queries and
avoided any unaccounted systematic bias due to query quality vari-
ation. Overall, the search task consisted of three parts: (1) pre-task
guidelines, (2) the web search task and (3) a post-task questionnaire.

The search queries (Section 3.2.1), which were all picked from a
pool of popular queries in Google Search, were randomly distributed
among our participants. The corresponding SERPs appeared all in
English and were scraped for later instrumentation, simulating thus
a website owner who wishes to track their users’ every move.

Participants accessed the instrumented SERPs through a ded-
icated server that did not alter the look and feel of the original
SERPs. This allowed us to capture fine-grained user interactions
while ensuring that the content of the SERPs remained consistent
with the original version. Each participant was allowed to perform
the search task only once to avoid introducing possible carry over
effects and, thus, altering their browsing behavior in subsequent
search tasks.
4https://searchengineland.com/google-search-ad-revenues-271188

Figure 1: Example of a Google SERPused in the online study.

3.2 Apparatus
3.2.1 Search Query Sample. Starting from Google Trends,5 we
selected a subset of the Top Categories and Shopping Categories
that were suitable representatives of transactional tasks [17] i.e.
categories that broadly express the intent of performing some web-
mediated activity or transaction, like shopping or finding a service.
Then, we extracted the top search queries issued in the US during
the last 12 months and further narrowed down our search query
collection to the 150 most popular search queries. Using this final
selection of search queries, we produced the static version of the
corresponding Google SERPs and injected JavaScript code (see next
section) that allowed us to capture all client-side user interactions.

3.2.2 Mouse Cursor Tracking. As previously stated, all SERPs were
downloaded and instrumented with custom JavaScript code. This
way, we could automatically insert mouse tracking code and log
cursor movements, hovers, and associated metadata. For this, we
used EvTrack,6 an open source JavaScript event tracking library
derived from the smt2𝜖 mouse tracking system [59].

We captured mousemove events via event polling, every 150ms
and all the other browser events (e.g., load, click, scroll) via event
listeners. Whenever an event was recorded, we logged the following
information: mouse cursor position (𝑥 and 𝑦 coordinates), times-
tamp, event name, XPath of the DOM element that relates to the
event, and the DOM element attributes (if any). EvTrack has no de-
pendencies and works in every major browser so, upon download,
it is ready to use; i.e. no tooling or build pipeline is needed. This
ease of use reveals how straightforward is to add mouse tracking
capabilities to websites.

3.2.3 Questionnaire. In addition to the mouse cursor data, we gath-
ered ground-truth information about the users through an online
questionnaire that was administered at post-task. The questions
included in the questionnaire were forced-choice type and allowed
multi-point response options. The questionnaire comprised the
following questions:

(1) What is your gender? [Male, Female, Prefer not to say]
(2) What is your age group? [18–23, 24–29, ..., 60–65, +66, Prefer

not to say]
(3) What is your native language? [Pull-down list, Prefer not to say]

5https://trends.google.com/trends/
6https://github.com/luileito/evtrack
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3.3 Participants
We recruited participants from the Figure Eight crowdsourcing
platform.7 They were of mixed nationality and had diverse edu-
cational backgrounds. All participants were proficient in English
and were experienced (Level 3) contributors, i.e. they had a track
record of successfully completed tasks and of a different variety,
thus being considered very reliable contributors.

3.4 Procedure
Participants were instructed to read carefully the terms and condi-
tions of the study which, among other things, informed them that
they should perform the task from a desktop or laptop computer
using a computer mouse (and refrain from using a touchpad, tablet,
or mobile device) and that their browsing activity would be logged.
Moreover, participants consented to share their browsing data and
their questionnaire responses for later analysis.

Participants were asked to act naturally and choose anything
that would best answer a given search query, since all “clickable” el-
ements (e.g., result links, images, etc.) on the SERP were considered
valid answers. The instructions were followed by a brief search task
description like “You want to buy <noun> (for you or someone else
as a gift) and you have submitted the search query <noun> to Google
Search. Please browse the search results page and click on the element
that you would normally select under this scenario.”

The SERPs were randomly assigned to the participants and each
participant could take the study only once (see ‘Design’ section).
Participants were allowed as much time as they needed to exam-
ine the SERP and proceed with the search task, which concluded
upon selecting any of the “clickable” elements on the SERP. At the
end of the task, participants were asked to complete the post-task
questionnaire. The payment for participation was $0.20 and the
study took 0.83 minutes on average to complete (Mdn=0.37, SD=2.3)
which roughly amounts to a 14$/h wage. Participants could also
opt-out at any moment, in which case they were not compensated.

3.5 Dataset
After excluding the users who did not provide their demographic
information (see ‘Questionnaire’ section) and had few mouse move-
ment data (less than ten mouse coordinates, which corresponds
roughly to two seconds of user interaction data), we concluded on
a set of 1, 467 search sessions. The average mouse cursor trajectory
length was 25.2 coordinates (SD=18.7, min=11, max=221). Next, our
dataset was divided into a 90:10 training-test split; i.e., 90% of the
data is used for model training and the remaining 10% of the data
is used for testing. Our raw dataset is publicly available.8

3.6 Machine Learning Models
The focus of these experiments is demonstrating how feasible it
is to implement a user profiling mechanism by relying on current
machine learning techniques and easily acquired mouse cursor data.
Therefore, for the sake of simplicity, we assume gender and age
classification to be a two-class problem, i.e. a user is classified as
‘male’ or ‘female’ and as ‘young’ or ‘adult’. We note that age could
be framed as a regression problem, however marketing companies
7https://www.figure-eight.com
8https://gitlab.com/iarapakis/the-attentive-cursor-dataset

care more about market segmentation (i.e. fitting customers into
target groups) rather than predicting a particular age [74, 86].

3.6.1 Baseline Models. We replicate the random forest (RF) clas-
sifier proposed in recent work [78, 104], which is an effective en-
semble method that allows for a reliable performance assessment.
Furthermore, we engineer a series of features (e.g., speed, accel-
eration, angle, traversed distance, hovers, clicks) and aggregate
functions (e.g., min, max, mean and standard deviation) derived
from the mouse cursor data, as reported in previous work [78, 104]
(170 features). Then, we exclude the highly correlated (𝑟 ≥ .80,
𝑝 < .05) and linearly dependent features from our feature set and
normalize the values for all features in the [0, 1] range, so that
feature values that fall in greater numeric ranges would not domi-
nate those in smaller numeric ranges. In total, the RF model uses 52
mouse cursor features for classification. As a last step, we determine
via grid search on a held-out set (comprising 10% of the training
data) the optimal hyper-parameter values (number of trees, number
of features, 𝜖-threshold, minimum size of terminal nodes, maximum
number of terminal nodes) and evaluate the performance of the RF
model against the test set.

We also implement a ZeroR classifier, also known as 0-R (zero
rule), which simply predicts the majority class. The ZeroR will
always output the same target value and does not use any input
features, hence its name. Despite its simplicity and lack of dis-
criminative power, this classifier is very useful for determining
the baseline performance, as a benchmark for other classification
methods like the ones we used in these experiments.

3.6.2 Recurrent Neural Network Models. Creating a competent
feature-based classifier like the RF previously described, as noted,
demands significant effort and time because of the hyperparam-
eter fine-tuning and, above all, the feature engineering process.
Indeed, feature engineering requires domain expertise to derive fea-
tures with sufficient discriminative power. With neural networks,
however, feature engineering is automatically performed by the net-
work itself. Together with the availability of state-of-the-art deep
learning libraries such as Tensorflow, Keras, PyTorch, or MXNet, it
has become increasingly easy to implement a competent classifier
with few lines of code (see our implementation in Figure 6) and,
hence, the purpose of this paper.

Since mouse movements are of sequential nature, we test a par-
ticular type of recurrent neural networks (RNNs) that is effective
at modeling time series, where each data point in the sequence
can be assumed to be dependent on the previous one. Concretely,
the model uses Gated Recurrent Unit (GRU) memory, which is a
simplification of the popular long short-term memory. We use the
bidirectional variant (BiGRU) since a major issue with all RNNs is
that they can only learn representations from previous time steps.
However, sometimes we have to learn representations from future
time steps to better understand the context and thus eliminate
potential ambiguities.

Our BiGRU takes as input a raw sequence of mouse cursor po-
sitions and time offsets, which can be seen as a multivariate time
series of three-dimensional data points. Because each mouse se-
quence has a different length, all sequences are padded to a fixed
length of 100 timesteps, which corresponds roughly to the mean
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Figure 2: Age classification results. All metrics are weighted by class distribution.
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Figure 3: Gender classification results. All metrics are weighted by class distribution.

sequence length observed in our dataset plus three standard devi-
ations. The input layer of our RNN model has 100 neurons (one
neuron per timestep). The hidden layer is the forward-backward
recurrent block (BiGRU) with 64 output units, using hyperbolic
tangent activation and sigmoid activation in the recurrent step.
We add a dropout layer with drop rate 𝑞 = 0.25 for regularization,
followed by a fully-connected (FC) layer of 1 output unit using
sigmoid activation. The model outputs a probability prediction 𝑝

of the user’s gender or age, where 𝑝 > .5 indicates that the user
belongs to the majority class (in our data, ‘male’ and ‘young’ are
the majority classes).

We use the popular Adam optimizer (stochastic gradient descent
with momentum) with learning rate [ = 0.0005 and decay rates
𝛽1 = 0.9 and 𝛽2 = 0.999. This model, including all the settings
described above, is implemented in five lines of Python code; see
Figure 6. We train this model with a batch size of 32 sequences
and up to 400 epochs, with early stopping of 40 epochs to prevent
overfitting.

4 USER PROFILING EXPERIMENTS
We report the weighted Precision, Recall, and F-measure (F1 score),
according to the target class distributions in each case. In addition,
we provide the Area Under the ROC curve (AUC), to highlight
the discriminative power of each classifier. Finally, we remind the
reader that the focus of this paper is not on attaining state-of-the-
art performance but rather on demonstrating that it is feasible to
implement a fairly competent user profiling mechanism by relying
on current machine learning techniques and easily acquired mouse
cursor data.

4.0.1 Age Classification. Prior work has linked age with motor
control and pointing performance in tasks that involve the use of a
computer mouse [15, 38, 47, 62, 88, 98]. Overall, ageing is marked
by a decline in motor control abilities, therefore it is expected to
affect the users’ pointing performance and, by extension, how they
move the computer mouse. For example, Smith et al. [88] observed
that older people incurred in longer mouse movement times, more
sub-movements, and more pointing errors than the young. These

findings underline potential age effects on the way a mouse device
is used in an online search task.

Figure 2 shows the performance results for the classification
task that targets user age. Here, we divide our users into two age
groups (“18–35” and “36–66”), in line with previous work [50, 78]
that applied a comparable binary split on their user sample. While
the RF model achieved an F-measure of 0.531 and an AUC of 0.528,
the BiGRU outperformed its peers with an F-measure of 0.653 and
an AUC of 0.712. Furthermore, we ran pairwise comparisons of
proportions (Bonferroni-Holm corrected, to guard against over-
testing the data) and observed statistically significant differences for
all metrics when comparing the BiGRU against the other classifiers
(𝑝 < .01).

We also note here that the performance of the RF model is
much smaller than what researchers have reported in previous
work [50, 78], whereas the simple implementation of our BiGRU
model, only with raw mouse movements as input (spatial coordi-
nates and time offsets) and five lines of code (Figure 6), validates
the need to raise further awareness about the potential threats of
mouse cursor tracking to online privacy.

4.0.2 Gender Classification. Prior research noted sensory-motor
differences due to gender [23, 53, 105], such as significant variation
in the cursor movement distance, pointing time, and cursor patterns.
The cause of these variations has been attributed to gender-based
differences in how users move a mouse cursor or to different cog-
nitive mechanisms (perceptual and spatial processes) involved in
motor control.

Figure 3 shows the performance results for the classification task
that targets user gender. Again, the BiGRU model outperformed its
peers. More specifically, the RF model achieved an F-measure of
0.523 and an AUC of 0.489, while the BiGRU achieved an F-measure
of 0.641 and an AUC of 0.650. The pairwise comparisons of propor-
tions (Bonferroni-Holm corrected) revealed statistically significant
differences for all metrics except Recall when comparing the BiGRU
against the other classifiers (𝑝 < .01). Although these results might
not be as impressive as those pertaining age classification, they



clearly deviate from random classification and definitely call for
attention to the potential implications for e-privacy.

In addition, we observe that, unlike the optimistic results re-
ported by others [78, 104], the same RF model performed worse on
our data, possibly due to the more challenging nature of the task.
More importantly, we have shown that a shallow BiGRU model
can outperform a predictive model that relies on a barrage of elab-
orate features, by using exclusively as input unprocessed mouse
cursor movements, which are easy to acquire unobtrusively and
at scale. Hence, sensitive information may be exploited by anyone
who has access to a simple profiling technology, such as the one
demonstrated in this paper.

5 PROFILING PREVENTION EXPERIMENTS
Now that we know that it is possible to easily infer user demo-
graphics from mouse cursor movements, we propose an adversarial
method to modify the user’s movements in such a way that the
resulting trajectory cannot disclose age and gender information.
The method is illustrated in Figure 4: Whenever a mousemove event
𝑒𝑡 happens at time 𝑡 , we insert another mousemove event program-
matically 𝑒 ′𝑡 ∼ N(0, 𝜎) which is within a 𝜎 radius away from the
original coordinate. This additive Gaussian noise is also applied
to the time offsets, to ensure that the distorted trajectory has no
duplicated times.

σ

Original

Distorted

Figure 4: Adversarial noise example. We add an intermedi-
ate coordinate programmatically between two consecutive
coordinates that is 𝜎 px away from the current position.

The amount of adversarial noise applied to each programmatic
event ranges randomly from 0 to 𝜎 . We ensure that distorted points
(both coordinates and time) are always positive values, in line with
regular mouse movement data. In this experiment, we study the
impact of 𝜎 in classification performance. Theoretically, a random
classifier should achieve an AUC score of 0.5 for a two-class clas-
sification problem. Therefore, we expect to see a degradation in
classification performance with regard to the previous experiments.
Given that the BiGRU outperformed the RF model and relies only
on raw mouse movements, we only challenge the BiGRU model in
these experiments.

As observed in Figure 5, using a radius of 𝜎 = 0.25 px is enough
to degrade the performance of the BiGRU model, which begins to
behave as a random classifier (AUC ≈ 0.5) of both age and gender.
The differences between the original mouse data and the degraded
versions are statistically significant at the 𝑝 < .001 level. Hence, this
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Figure 5: Degradation of classification results (weighted by
class distribution) after introducing adversarial noise.

experiment justifies further our proposal to prevent user profiling
techniques that exploit mouse cursor movements data. We argue
that by using this adversarial noise, a mouse movement trajectory
would become “illegible” to any machine learning model trying to
classify the user’s age or gender. This experiment is inline with
previous research that reported very small perturbations to cause a
significant performance degradation [81]. Indeed, by scrambling
both spatial and temporal information from a mouse cursor trajec-
tory we are effectively signaling a seemingly arbitrary and jittery
movement.

To validate further the validity of this adversarial noise, we re-
trained our BiGRUmodel with distorted mouse data, using the same
configuration from our previous experiments (Section 3.6.2). Now
each mouse sequence is distorted according to a random uniform
distribution 𝜎 ∼ U(0, 1), which means that some coordinates are
preserved (𝜎 = 0) whereas others are more distorted (𝜎 = 1). The
results are shown in Table 1. As can be observed, the model achieves
worse performance than the model trained on the original, non-
distorted data, sometimes by a large margin. This was especially
so for the age classifier. We conclude that the proposed adversarial
noise technique is a robust countermeasure against the neural net
used as profiling mechanism via mouse cursor tracking.

We have implemented this adversarial method in a Chrome
extension (see ‘Resources’ section) that allows to configure the
adversarial noise level (random uniform by default) and the num-
ber of mousemove events (one coordinate by default) to be added
programmatically. The idea of providing these “sane defaults” is to
avoid making the mouse movements too distorted so as they can
go unnoticed by a machine learner trying to distinguish between
human and fake movements.

6 DISCUSSION
The rapid growth of online advertising has spurred the demand for
effective, but also at times privacy-invasive user profiling technolo-
gies that allow to deliver more relevant ad content to the user. Of
course, user profiling is not a bad thing per se, since it allows to de-
liver more relevant ad content to the user. However, as targeted ads
are believed to produce increased revenues, various intermediary
companies (such as ad platforms and ad exchanges) are tracking
users at scale, and often in an unregulated manner, which has re-
sulted in a privacy nightmare [77]. Advertising is currently the



Demographics Adj. Precision Adj. Recall Adj. F-measure ROC AUC

Age 0.6301 ↓8.55% 0.5986 ↓11.05% 0.5328 ↓18.4% 0.6074 ↓14.7%
Gender 0.6429 ↑0.45% 0.6463 ↓0.04% 0.6133 ↓4.32% 0.6308 ↓2.95%

Table 1: Test performance of our BiGRU when trained using adversarial noise 𝝈 ∼ U(0, 1). We show the performance degra-
dation in parentheses, as a the percentage variation w.r.t the same classifier trained on non-distorted data.

main business model of “free” content and services on the Web,
though if something is free it usually means that the user is the
product. This dystopian reality evokes a disconcerting dichotomy
between, on the one hand, having to accept a digital life with no
privacy and, on the other hand, retaining our privacy by being off
the digital life.

Privacy is essential for the citizens of both the physical and the
digital world. But also privacy is constantly being juxtaposed with
competing goods and interests, balanced against disparate needs
and demands [80]. More importantly, the loss of privacy translates
into a loss of freedom. In other words, freedom of expression is
threatened by the surveillance of our digital traces; thought patterns
and intentions can be extrapolated from website visits (rightly or
wrongly), and the knowledge that we are being surveyed can make
one less likely to research a particular topic.9 And even efforts
to regulate the web tracking landscape, such as the DNT Header,
require good faith cooperation from the parties at the other end
of the web connection, which is not always guaranteed. In fact,
most tracking domains and ad platforms are unlikely to ignore user
tracking, because they make their business out of these data. Hence,
the Web privacy problem is a fallout of rapid and uncontrolled
growth in technology, mainly driven by a lack of transparency,
control, and difficulty to understand e-privacy implications.

6.1 Implications and Outlook
Mouse cursor tracking is very difficult to avoid while browsing
the Web today. Our mouse movements can be tracked silently at
scale, in Incognito mode, and even without JavaScript enabled [42].
Being a low-cost and reasonable proxy of visual attention, mouse
cursor tracking cannot be discounted from being a modern “Trojan
horse”. Our analysis corroborates this account and demonstrates
that, through a very simple machine learning implementation, we
can infer people’s gender or age inadvertently. We do not argue,
however, that mouse tracking should be removed from any website,
as it may be a valuable data source for various application scenarios.
Rather, we find it disconcerting that currently there is no way for
end-users to opt-out easily.

The work presented here serves a dual purpose. First, it aims at
raising awareness on the emerging privacy threats in the online
world and exposes some of the unaccounted —yet sizeable risks—
of tracking technologies. Even when dealing with a seemingly
harmless browser activity logging practice, such as the collection
of mouse cursor coordinates, a third party can mine this data to
uncover personally identifiable information about the users. Second,
with this work we intend to give control back to the users over
their (mouse) data. We are certainly not the first ones in aiming

9https://robindoherty.com/2016/01/06/nothing-to-hide.html

at this goal, though, to the best of our knowledge, our proposed
adversarial noise technique is the first countermeasure against user
profiling based on mouse cursor tracking. We note, however, that
our method will not prevent “any and all” profiling techniques
within mouse tracking, as the field of adversarial machine learning
progresses rapidly and new counter-countermeasures are likely to
appear in the future.

Researchers have proposed restricting access to only the features
which are necessary for delivering a desired functionality [89],
enforcing thus a principle of least privilege [26]. Google Chrome
have recently announced a new technical proposal named “privacy
budget” that could restore the balance between user privacy and
ad targeting on the Web.10 With a privacy budget, websites could
call APIs until those calls have revealed enough information, to
narrow a user down to a group sufficiently large enough to maintain
anonymity. After that, any further attempts to call such APIs would
cause the browser to intervene and block further calls. Under this
scenario, we could imagine a user-configurable privacy budget
for mouse tracking data, though a set of sane defaults should be
provided by browser vendors. For example, if a JavaScript function
is listening to the onmousemove event more than 𝑁 seconds in a
row, the browser would block further calls to the listener function.
We would also recommend browser vendors to list what sensitive
APIs a website is using, just like they do currently to inform about
SSL certificates, for example, or even ask for explicit consent to
the user when the website requires access to such sensitive APIs,
similar to app permission requests in mobile devices.

Finally, we hope that this work will motivate further research
to counterbalance initiatives on developing privacy-invasive user
profiling technologies by delivering techniques that can preserve
user anonymity and protect personally identifiable information.
This work also highlights the need for more transparency and
privacy-aware tools. We believe that users should be tracked, if
at all, by category instead of individually. While some advertisers
do care about organizing users into general groups, others aim
at creating detailed individual profiles, which should not happen
without explicit user’s consent.

6.2 Limitations and Future Work
We have analyzed movements generated by a computer mouse and
so the proposed method is not expected to work “as is” on touch-
capable devices, such as tablets or smartphones. However, user
engagement is still higher on desktop than on mobile [8], which
means more profitability for advertisers. Nonetheless, this presents
an opportunity to extend our work and account for touch-based

10https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html

https://robindoherty.com/2016/01/06/nothing-to-hide.html
https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html


interactions such as, for example, tracking zoom/pinch gestures
and scroll activity instead of the mouse cursor position [35].

We have shown that it is possible to detect user demographics
with reasonable accuracy. More importantly, we have shown that
is possible to do so unobtrusively and at scale, by relying only on
sequences of raw mouse cursor data. However, since the focus of
our work in not on attaining state-of-the-art performance, there
is still room to benchmark further the capabilities of such user
profiling technologies and uncover additional vulnerabilities in the
data. For example, stacking more recurrent layers (deeper model),
increasing the number of hidden neurons (wider model), or using
data augmentation techniques. Even non-sequential models are
also possible to analyze mouse cursor data [7].

Finally, we acknowledge a limitation of our adversarial noise
technique. The W3C consortium introduced the concept of “trusted
events”,11 to help developers differentiate between events triggered
by a genuine user interaction and those triggered programmatically,
e.g., by a 3rd party script. Our Chrome extension adds mouse cursor
distortions programmatically via JavaScript, therefore those events
are considered untrusted, although currently none of the major
mouse tracking companies filter out untrusted DOM events.12 It is
a matter of time, however, for companies to catch up and update
their tracking technology. Therefore, in future work we will release
a program that runs at the Operating System level13 and thus can
trigger mouse events that are seen as trusted by the web browser.

7 CONCLUSION
It is possible to infer user demographics unobtrusively and at scale
with reasonable accuracy, using an off-the-shelf recurrent neu-
ral network that takes as input raw mouse movements. Previous
attempts have relied on expert knowledge in machine learning tech-
niques and feature engineering methods. Therefore, we noticed an
unprecedented low entry barrier for webmasters interested in pro-
filing the user on their websites with no effort, highlighting thus a
disconcerting privacy issue. We have proposed an adversarial noise
method to mitigate such user profiling techniques that make use
of mouse cursor tracking to predict demographic variables such
as gender and age, so that users interested in preserving their pri-
vacy can do so with no effort too. It is our hope that this paper
will raise awareness among the research community about how
easy the task of profiling users on the Web has become, including
mouse cursor tracking and beyond. With this paper we want to
bring together browser vendors, advertising platforms, practition-
ers, and web users to reflect on the tradeoffs between privacy and
technological innovation, and the impact that unethical practices
may have on users in the real world.
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A RNN CODE
Figure 6 illustrates the deceptively ease of creating a fairly compe-
tent recurrent neural network for two-class classification that takes
as input a trajectory of (𝑥,𝑦, 𝑡) coordinates (max. 100 timesteps)
and outputs the majority class probability.

1 model = Sequential ()
2 model.add(Bidirectional(GRU (64), input_shape = (100 ,3)))
3 model.add(Dropout (0.25))
4 model.add(Dense(1, activation = "sigmoid"))
5 model.compile(loss = "binary_crossentropy", optimizer =

↩→ Adam (0.0005))

Figure 6: Our RNN implementation with the Keras library.

B RESOURCES
We release a Chrome extension that implements our adversarial
noise approach to distort the mouse cursor coordinates on the fly.
The extension can be enabled or disabled for whitelisted domains.
This way, the user can allow certain websites to track their mouse
movements as needed; e.g., as part of an auditing process of a
banking website, an e-commerce that do not request personal data
but want to get a demographics overview of their visitors, or simply
a research study that pays the user for letting them to analyze
their mouse cursor activity. The extension can be downloaded at
https://github.com/luileito/mousefaker.

Our dataset comprising mouse cursor movements and associated
demographic variables is available at https://gitlab.com/iarapakis/
the-attentive-cursor-dataset. Each user log includes the following
information: query, gender, age, browser viewport size (width and
height), and mouse cursor trajectory as a sequence of (𝑥,𝑦, 𝑡) tuples.
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