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ABSTRACT
Being able to check whether an online advertisement has been
targeted is essential for resolving privacy controversies and imple-
menting in practice data protection regulations like GDPR, CCPA,
and COPPA. In this paper we describe the design, implementation,
and deployment of an advertisement auditing system called eyeWn-
der that uses crowdsourcing to reveal in real time whether a display
advertisement has been targeted or not. Crowdsourcing simplifies
the detection of targeted advertising, but requires reporting to a
central repository the impressions seen by different users, thereby
jeopardizing their privacy. We break this deadlock with a privacy
preserving data sharing protocol that allows eyeWnder to compute
global statistics required to detect targeting, while keeping the ad-
vertisements seen by individual users and their browsing history
private. We conduct a simulation study to explore the effect of dif-
ferent parameters and a live validation to demonstrate the accuracy
of our approach. Unlike previous solutions, eyeWnder can even
detect indirect targeting, i.e., marketing campaigns that promote
a product or service whose description bears no semantic overlap
with its targeted audience.
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1 INTRODUCTION
Targeted advertising offers the possibility of delivering tailored ad-
vertisements (in the following ads) to users based on their interests
and demographic properties. It has helped the advertising industry
reach high growth rates and revenues (23.2% growth and $23.9B
in Q1 ’18 in US only) [14], has created lots of jobs, subsidized the
delivery of free services, and funded a lot of digital innovation. Of
course, to deliver targeted ads, so-called AdTech companies need to
detect users’ interests and intentions which is done by monitoring
visited pages, searched terms, social network activity, etc.

In its principle, the concept of targeted (or personalized) adver-
tising appears benign: offering to consumers products and services
that they truly care about, instead of irrelevant ones that distract or
annoy. It is in its implementation and actual use where controver-
sies start arising. For example, tracking should respect fundamental
data protection rights of people, such as their desire to opt-out, and
should keep clear from sensitive personal-data categories, such as
health, political beliefs, religion or sexual orientation, protected
by data protection laws like GDPR [24] in Europe and the Cali-
fornia Consumers Privacy Act (CCPA) [53] in US. Similarly, sensi-
tive demographic groups, like children, should be protected from
data collection and targeting as mandated, for example, by FTC’s
COPPA [2] regulation in US. Unfortunately, this is not always the
case, as made evident by the continuous presence of the topic in
the news and public debates [13, 50], or the conducted investiga-
tions and placed fines [51]. A direct consequence of concern around
privacy is the rise in popularity of anti-tracking and ad-blocking
tools [3, 4, 23, 29, 45]. This surge of software can choke the web
of its advertising revenues. To avoid a Tragedy of the Commons
triggered by eroding privacy [38], companies offering web services
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need to gain back the trust of their users. An important step in this
direction would be to provide users with the ability to single out
and report ads that violate privacy norms and laws.

The networking, measurements, and distributed systems com-
munity has been active in the development of a new breed of trans-
parency tools [38] for end users, data protection authorities, and the
advertising sector’s own self-regulation initiatives. Initial efforts
went to detecting online price discrimination [31, 32, 43, 44] fol-
lowed by tools for detecting targeted advertising [17, 39–41, 47, 55].
Having the ability to verify the deja vu feeling arising when running
into seemingly familiar offerings is important for user empower-
ment and goes beyond mere curiosity. For example, it can allow a
user to check whether marketers have respected his opt-out signals,
expressed through Do-Not-Track [22], AdChoices [5], or any of the
numerous self-regulation initiatives put forth by the advertising
sector. Moreover, if a user runs into an ad related to sensitive, and
hence protected, data category, he should be able to verify whether
this has been targeted, or is appearing for other reasons. The latter
is not always trivial, as with the so called "re-targeted" ads display-
ing products and services visited by the user in the recent past.
Behavioral targeting can be more general and, for example, display
to a user a pair of sneakers of brand B’ at store S’ because the user
viewed a pair of sneakers of brand B at store S. A pair of jeans may
then be displayed due to the previously viewed sneakers. Detecting
such indirect targeting quickly becomes a guessing game, and is,
therefore, of little use to the monitoring and enforcement of data
protection laws.

Early work on detecting targeting has employed artificially cre-
ated “personas”, i.e., browsers scripted to visit certain pages that
allude to clear demographic types [10, 17, 39, 40], as “bait” for
measuring whether ad delivery channels target these demographic
types. In the “offline” version of the same approach, researchers
have looked at passively collected web click-streams to detect corre-
lations between the pages visited by real users and the ads delivered
to them [8, 41, 56]. While these studies have made important con-
tributions, in general, they have been designed to operate offline,
at a low scale, or using simulated personas. In this paper, we aim at
addressing the following question: “Can we detect ad targeting with
real users, in real time, and at large scale?”
Our contributions: In this paper, we propose a novel, scalable, and
real-time ad detection approach, and implement it on real user’s
devices. Instead of using “personas” and automated bots to collect
ads from artificial visits to pages, we rely on a custom protocol
for collecting statistics about the actual ads encountered by real
users while browsing online. We show that a surprisingly simple
count-based heuristic can detect targeting with high precision. This
simple heuristic is based on the observation that targeted ads tend
to “follow” specific users across multiple domains, while being seen
by relatively fewer users than non-targeted ones. The heuristic can
be computed in real-time and in a scalable fashion. Furthermore, it
is agnostic to how users’ information was collected, and to how im-
pressions were auctioned and delivered. This “black box” approach
only looks for correlations between users and advertisements, and
is, thus, robust to detection countermeasures [9]. Evading it, would
require eliminating such correlations, which goes against the spirit
and the essence of targeted advertising.

Crowdsourcing is a powerful tool for detecting targeted ads, but
requires users to report the ads they encounter in different websites.
The second technical contribution of our work is a protocol for
exchanging this information in a privacy-preserving manner. We
leverage a wealth of previous work on privacy-preserving aggregate
statistic computation [19, 37, 42], to compute aggregate statistics
required by the ad detection algorithm, while keeping the ads seen
by users1 and their browsing history private. In particular, we
design a privacy-preserving protocol to compute distribution of ads
seen by users. Different from previous work in this area, we face
the challenge of protecting not only the distribution of the ads, but
the ads themselves. This problem was recently framed by [26] as
the problem of estimating “unknown unknowns”. The techniques
presented in [26] are based on differential privacy and require
clients to report their “real” distribution as well as distributions
computed using n-grams of the labels (in our case, ad URLs). As
such, their technique fits scenarios where labels are short and not
random. We take a different approach and propose a technique that
is less involved and works with any label size.

We have implemented our count-based heuristic and the privacy-
preserving protocol to support it in a distributed system that we call
eyeWnder. The third contribution of our work is the deployment,
validation, and measurement study executed using eyeWnder.
Our findings:Wehave been operating eyeWnder live for more than
one year with close to 1000 users in order to get feedback onmatters
of user experience and desired features. This user base includes 100
paid volunteers from FigureEight [27] who have agreed to lend their
data to our validation efforts. We have also conducted extensive
simulation studies in which we could control how advertisements
are displayed. Our findings are as follows:
- Our simulations show that it only takes 6 to 7 repetitions of an ad
to make it detectable by eyeWnder. Even with such low repetition
frequency, our algorithm achieves a false negative rate of less than
30%. Tuning the algorithm can bring the false negative rate to
below 10%, at the expense of requiring around 5 more repetitions.
More importantly, false positives, i.e., non-targeted ads classified as
targeted, are typically close to zero, and reach up to 2% only in the
most extreme corner scenario that we have evaluated. Having very
low false positives means that when eyeWnder classifies an ad as
targeted, then it most probably is. This is fundamental, if the tool
is to be used for reporting suspected data protection violations.
- The above simulations are aligned with the results from our live
validation with real users and advertising campaigns that are not
under our control. Count-based ad detection, even with as few as
100 users, yields high precision, with true positive and true negative
rates of 78% and 87%, respectively.
- Privacy-preserving crowdsourcing allows to compute the aggre-
gate statistics required by the ad detection mechanism while keep-
ing user browsing history and received ads private. In particular, the
privacy-preserving protocol has a negligible effect on the quality
of the computed statistics.
- We have detected several examples of indirect targeting that exist-
ing content-based techniques (i.e., semantic overlap between the
user profile and the received ad) are unable to detect, as well as
signs of advertising bias towards different demographic traits.

1Note that targeted ads can reveal user interests [18].
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- We make available our plugin via the Chrome Store, for wide
testing and use from end-users, privacy researchers and auditors2.

2 BACKGROUND AND REQUIREMENTS
2.1 Types of online ads
In the rest of the paper, we will refer to ads as either targeted or non-
targeted. Furthermore, we will distinguish targeted ads between
Directly- and Indirectly-targeted ads.
Targeted vs. Non-targeted ads: Targeted ads are selected based
on data about the user visiting a website. The exact algorithms used
are trade secrets of the different AdTech companies but it is widely
accepted that such algorithms rely upon user demographic informa-
tion (gender and age), geo-location information (GPS coordinates,
IP address or Base-station id), behavioral information extracted
from user online activity (websites visited, searched terms, social
network activity, etc.). The form of targeted advertising based on
behavioral attributes is referred to as Online Behavioral Advertising
(OBA) whereas ads regarding a previously visited webpage offering
products or services (e.g., a website offering hotels) is referred to as
Retargeting [10].
Non-Targeted ads are shown irrespectively of the user visiting the
website. This class of ads includes static ads (shown to all users vis-
iting a website based on a private deal between advertisers and pub-
lishers), as well as contextual ads (ads matching the context/topic
of the website, e.g., a sports ad appearing on a sports website).
Direct vs. Indirect targeting: Direct targeting is the most obvious
form of targeting. In this case, an advertiser interested in selling
products of a certain category (e.g., fishing products) targets users
tagged as interested in such category (i.e., fishing). Most of previous
work has focused on analyzing this type of targeting [17, 39, 40].
Indirect targeting is applied when marketers may target a certain
group of users with offerings that have no direct semantic overlap
with the category this group has been tagged with. For instance, it
has been reported that fans of the Walking Dead TV series were
targeted with pro Donald Trump material [12]. This would be an ex-
ample of indirect targeting, since the targeted user group (Walking
Dead fans) has no immediate semantic overlap with the adver-
tised offering. To the best of our knowledge, eyeWnder is the first
proposal that tackles indirectly targeted ads.

2.2 Requirements
Next, we enumerate the most important requirements of a system
for real-time detection of targeted ads. Such requirements have
emerged from reviewing the limitation of existing approaches found
in the literature. In Section 9 and Table 4 we provide an extensive
comparison between our solution and existing proposals.
Generality: The detection mechanism should be able to analyze
any web-based display ad. It should not be limited to a specific
ecosystem (e.g., Facebook advertising) where more information
about the user or the ad may be available, or platform (e.g., Ad-
Choices initiative [5]). Moreover, detection should work indepen-
dently of the tracking mechanisms used for collecting user data,
interests, and intentions (be it via cookies, browser fingerprinting,

2http://www.eyewnder.com/views/index

or user contributed information such as searches or social network
activity).
Precision: The mechanism should allow untrained users for au-
diting, and potentially reporting, offending ads. Therefore it is
essential to have a high detection precision in terms of True Posi-
tives (TP) and True Negatives (TN). Validation should be carried out
using publicly available data, i.e., without requiring special access
to silo-ed data from AdTech delivery channels, Telcos, marketing
campaigns, or other gatekeepers of such information that, generally
speaking, have no incentive to make it public.
Simplicity: The detection method should be as simple as possi-
ble, so that it can be implemented as a distributed system with
most of the functionality and code running on the end-user device
(browser).
Real time operation: A user should be able to request auditing
of a particular ad appearing in his browser, and the system should
respond within at most few seconds.
Scalability: The detection method should be able to handle a large
number of users (in the order of tens of thousands) without special
requirements on the back-end, including CPU load, memory, stor-
age, and bandwidth consumption. Resource consumption must be
limited to “control plane” rather than “data plane” tasks, to make
the method scale.
Ad-fraud avoidance: Differently from previous work [17, 39, 40],
the method should avoid fake visits to pages, since fake visits con-
tribute to fake ad impressions and click-fraud.
Detection of indirect targeting: The detection method should
be able to detect both direct and indirect targeting.
User privacy protection: The method should not jeopardize the
privacy of end-users by, e.g., requiring them to share sensitive data
such as their browsing history or ads seen.

3 ETHICAL CONSIDERATIONS
We have obtained ethical approval from our institutions and the
funding agencies to conduct this research. Moreover, we have ob-
tained explicit consent from users, before installing our extension
through the FigureEight platform interface [27], to collect and pro-
cess the anonymous data used in this paper. Note that the partic-
ipants where provided with a detailed explanation on what the
browser extension is actually collecting and when. We also provide
suggestions and recommendations on how the browser extension
should be used during the experiments. Apart from providing in-
structions to users, we also implement some additional safety mea-
sure in order to avoid any accidental information leakage from our
users, such as, removing any parameters from the collected URLs
and using dynamic randomly generated identifiers.

4 A COUNT-BASED ALGORITHM
In this section, we describe a count-based algorithm for detecting
targeted ads using only frequency counts of impressions seen by
users across different domains. The algorithm is inspired by simple
observations on how targeted ads behave, namely 1) targeted ads
tend to “follow” targeted users across multiple domains, and 2)
targeted ads are seen by relatively fewer users than non-targeted
ads.

http://www.eyewnder.com/views/index
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Algorithm 1 The count-based algorithm for ad α seen by user u
Require:

Counters:
#Usersα ▷ Number of other users that observe ad α
#Domainsu ,α ▷ Number of domains that user u observe ad α
Thresholds:
Usersth ▷ Users threshold based on all users
Domainsth,u ▷ Domains threshold for a specific user u

1: if #Usersα ≤ Usersth AND #Domainsu ,α ≥ Domainsth,u
then

2: Targeted ad
3: else
4: Non-targeted ad

4.1 Algorithm description
Our algorithm is simple and is based on the above remarks. Follow-
ing Algorithm 1, by observation (1), if a given ad α is targeting a
specific user u, that user is likely to encounter α across multiple
domains. Therefore, the algorithm counts the number of differ-
ent domains (#Domainsu ,α ) where user u has seen α , and labels
the ad as targeted if that number crosses a threshold that we call
Domainsth,u . Similarly, by observation (2), if α is targeting u, most
likely very few other users will see α during their browsing activity,
i.e., only users that share similar interests with u. Therefore, the
algorithm counts the number of different users (#Usersα ) that have
seen α and labels α as targeted if that number is below the Usersth
threshold. Note that the algorithm annotates an ad as targeted only
if both conditions hold, as depicted in Algorithm 1 - Line 1.

Given an ad α , the number of domains where a user has seen α ,
along with the corresponding Domainsth,u are dependent on user
u and, thus, can be computed locally. On the other hand, computing
the number of different users that have seen α , as well as the Usersth
requires a global view of the system.

4.2 Algorithm details
Threshold estimation: A fundamental design choice of our algo-
rithm is how to compute the Domainsth,u and Usersth thresholds.
We empirically evaluated different options based on several mo-
ments of the distributions (the mean, the median, the standard
deviation, and possible combinations thereof). We eventually set-
tled for themean of the distribution since it offered the best trade-off
between accuracy and the data we require from our users. For the
sake of clarity, we do discuss all the alternatives we have considered
but, in Section 7.2.3, we demonstrate the performance difference
for a few of these options and show why we settle for the mean.

In order to be able to set the Domainsth,u threshold, we require
a minimum amount of information from users. Similar to [52], we
require that users have visited at least 4 domains that serve ads
within the last 7 days. If this minimum requirement is not met, our
algorithm refrains from making a guess for lack of sufficient data.
Time-window selection:Our algorithm operates in time intervals
in order to update the Usersth threshold, since users can continu-
ously receive and report ads during their normal browsing sessions.
We select a time window of one week based on the following ob-
servations. First, users tend to browse differently during weekdays
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Figure 1: Architecture overview of the eyeWnder system and
the information flow between entities.

and weekends [11]. Therefore, we consider a week as a natural time
period where both weekdays and weekend are captured, allowing
us to study users’ behavior in both types of days. Second, we con-
sider how targeted ads behave, which aggressively follow the user
for a few days and gradually fade-out over time. Thus, a window of
seven days is sufficiently large to capture targeting and allows to
collect enough historical information for the algorithm to operate.
In fact, we directly contacted 4 large DSP platforms and confirmed
that the majority of ad-campaigns they serve last a week or more.
Note that the Domainsth,u threshold is per individual user, thus,
can be updated in real-time within each user’s browser.

5 THE EYEWNDER SYSTEM
In this section, we describe the high level components of the system
and the information flows between them.

The high level architecture of eyeWnder is depicted in Figure 1.
The system consists of four components: the browser extension
instances, a back-end server, a centralized database, and a crawler
server.
Browser extension: The extension performs the following func-
tions: (1) Collects information about the ads rendered to the user.
(2) Reports information to the back-end server (Figure 1, arrow 1)
through the privacy-preserving protocol of Section 6. (3) Classifies
ads as targeted or non-targeted, by leveraging the algorithm of
Section 4.1.

The actual algorithm that classifies ads as targeted vs. non-
targeted consists of just a few lines of JavaScript code. Identifying
and collecting info about ads is more involved. Indeed, different ad
delivery channels use a multitude of techniques for delivering dis-
play ads. Several of them go at great lengths to make programmatic
detection of their code difficult, in an attempt to evade ad-blocking
software. Our extension runs an ad-detection algorithm to auto-
matically detect ads within a page, and a landing page detection
algorithm to infer the pages where ads lead once clicked. Our ad-
detection algorithm is similar to the one of AdBlockPlus [3]. Our
goal, however, is just to analyze an ad, and not to block it.

To correctly identify an ad, the algorithm utilizes a multi-step
process. In the first step, we look up a URL in ad blocking lists,
such as easylist [1]. If there is a match, then the algorithm analyse
the content of the response such as the visible size of the loaded
content (a.k.a. creative) in order to avoid any tracking pixels, the
source URL of the creative and other features to make sure that
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the ad slot is actually populated with visible content. Note that in
some cases ad slots may remain unpopulated during rendering time
due to user interaction with the webpage (dynamic content loading
only of visible parts of a page) and other reasons that have to do
with how an ad network delivers its content.

In order to avoid click-fraud, the landing page detection algo-
rithm does not click on the ad, but rather applies a series of heuris-
tics to discover the landing URL. In particular, the algorithm ex-
amines <a> HTML tags to extract the URL from the href field;
alternatively, the algorithm looks for onclick events and extracts
the URL if it exists3. In case of JavaScript code, we run a regex to
detect any URL-like strings within the script text. In all the above
cases, if the detection algorithm finds a URL that does not belong
to well-known ad networks, we consider the URL as the ad landing
page. Otherwise, we refrain from resolving the URL in order to
avoid click-fraud. A similar technique was used in [35, 47]. In case
of ads with randomized landing page URLs (e.g., malicious ads [54]
or customized dynamic ads [6]), we use the ad content (i.e., the
image URL, etc.) to uniquely identify the same advertisement across
different impressions. To identify ad networks that use randomized
landing page URLs we use the methodology described in [16].
Back-end server: The server maintains the #Usersα counters and
computes the corresponding Usersth threshold. By leveraging the
privacy-preserving protocol of Section 6, the server receives blinded
reports from the extensions, aggregates them, and extracts an esti-
mate of the number of users that have seen an ad—thereby com-
puting the #Usersα counters. The server also computes the Usersth
threshold by applying themethodology of Section 4.2; the computed
threshold is then distributed to clients (Figure 1, arrow 5).
Database:We use MySQL to store system metadata, such as, active
users within the system, historic anonymized data reported by
users, etc.(Figure 1, arrow 2). We also store aggregated data that we
need for evaluation purposes.
Crawler server: This component is used only for evaluation pur-
poses, and is responsible for collecting ad-related data on specific
webpages. The crawler is controlled by the back-end server and can
be instructed to visit specific websites upon request (Figure 1, arrow
3). Specifically, the crawler server visits audited pages to collect ads
with a clear browsing profile (empty browser cache and an empty
set of cookies). These ads are then used for deciding whether eye-
Wnder has indeed classified accurately an ad as targeted (in which
case the crawler should not encounter it during a visit). The crawler
can launch multiple instances of a clean profile browser with the
eyeWnder extension installed, and store the detected ads directly
into the database (Figure 1, arrow 4).

6 PRIVACY PRESERVING PROTOCOL
In this section, we detail a privacy-preserving protocol that allows
the back-end server to compute the #Usersα counters while clients
keep the ads they have seen private.

We leverage techniques used in many proposals for privacy-
preserving aggregated statistics [19, 37, 42]. The basic idea is that
each user blinds his report before sending it to the server. Blinding
factors are agreed upon by all users and are such that if the server

3In some cases the onclick event is redirected to a JavaScript function instead of a
URL redirection.

aggregates all reports, the blinding cancels out and the aggregate
statistic (e.g., the sum of all reports) becomes available to the server.
In a nutshell, one can think of the blinding factors as additive ran-
dom shares of 0. If users report a vector of values, they should
compute separate blindings for each position of the vector. One
fundamental assumption underlying the design just described is
that all parties in the system (i.e., users and the server) can enu-
merate the whole set of elements to be reported. In our scenario,
this set—we denote it by A—includes all ads seen by at least one of
our users. Therefore, its size may be large and, most importantly,
users may not be able to enumerate it. For example, user Alice may
not know what ads have been seen by user Bob. In such settings,
one could use synopsis data structures for multi-sets that admit ag-
gregation. For example count-min-sketches [30] (CMS) or spectral
bloom filters [20] can be used. In this work, we use CMS as they
allow us to bound the probability of error, as well as the error itself.

6.1 Count-min-sketch
A CMS X is a bi-dimensional array with d = ⌈lnT /δ⌉ rows and
w = ⌈e/ϵ⌉ columns, where T is the number of elements to be
counted. All the cells of the sketch are initialized to 0 andd pairwise-
independent hash functions {hj : {0, 1}∗ → [w]}1≤j≤d are chosen.

The encoding of an element xi is done by calling X.update(xi)
that increments X [j,hj (xi )] by 1, for 1 ≤ j ≤ d .

The estimated frequency c̄xi of element xi is retrieved by calling
X.query(xi) that outputs minj X [j,hj (xi )] such that:

(1) cxi ≤ c̄xi
(2) c̄xi ≤ cxi + ϵ

∑
j=1..T cx j with probability 1 − δ

where cxi is the true frequency of element xi .
In eyeWnder, each user encodes the set of ads he has seen in

a CMS data structure, and blinds each cell before sending it to
the server. The server aggregates all CMSes so that all blindings
cancel out, and obtains the aggregate CMS encoding the multi-
set of ads seen across all users. If users share an additive random
share of 0 for each cell of the CMS, this design allows for a privacy-
preserving aggregate statistics framework for scenarios where the
set of elements to be counted is (a) large and (b) not enumerable by
each party.

This design is similar to the one shown in [42], that in turn,
extends techniques presented in [37]. However, the clients in [42]
can enumerate the set of elements to be reported and, therefore,
[42] presents a less challenging scenario.

We also face an additional challenge, that, to the best of our
knowledge, has not been addressed by existing privacy-preserving
aggregate statistic techniques. Data structures like spectral bloom
filters or CMS allow to query for the estimate frequency of a given
element x . That is, the querier (i.e., our server) must enumerate
all the ads encoded in the aggregate CMS, in order to learn the
distribution of ads as seen by users. Of course, the server cannot
do so and our privacy goal forbids clients from sending the URLs
of the ads to the server. We overcome this problem as follows.

We map the URL of an ad ID in [1, |A|] by means of a pseudo-
random function (PRF). The latter is keyed to prevent the server
from computing the mapping on its own. In particular, given an ad
URL x , its ad ID is computed as y = F (k, x) where F is a PRF and k
is a cryptographic key. For each ad seen by a user, the extension
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computes the corresponding ad ID and encodes it in the CMS. Note
that without knowledge of k , it is not possible to relate ad URL x
to its identifier y.

Rather than hard-coding the key k in the extension, we bor-
row from previous research on Oblivious Pseudo-Random Function
(OPRF) [28] and introduce an additional server to help clients map-
ping ad URLs to ad IDs. The oprf-server holds the secret key k and
aids clients to compute y = F (k, x) for a given ad URL x . As the
name suggests, the server is “oblivious” to the input of the PRF
so that x remains private to the user.4 While such a design choice
requires an additional server, we note that previous work uses a
similar approach in order to improve the overall security of an
application [25, 36]. In a real-world deployment, the oprf-server
may be instantiated by already-deployed trusted-third parties such
as certification authorities, EFF, etc.

In practice, we have to (over)estimate |A| in order to minimize
collisions when mapping an ad URL to an ad ID. However, by
overestimating |A|, the server is likely to query the CMS for ad IDs
that correspond to none of the encoded ads (i.e., a false positive).
Nevertheless, later we show that a CMS is robust to false positives
by design.

In the following, we provide details of the protocol.
Blinding factors:We borrow from Kursawe et al. [37] who have
shown how a set of users can agree on random shares of 0. In partic-
ular, let N be the number of users andM be the number of elements
to be blinded (e.g., the number of cells in a CMS). Also, denote by
xi , y = д

xi , the private and public key of userui , respectively. Here,
д is a generator of a cyclic groupG of order q, where Computational
Diffie Hellman is hard. Assume that the public key of each user is
available to all other users in the system, e.g., by means of a public
bulletin board like an online forum5. At round s , user ui generates
a blinding factor for them-th cell as:

bi [m] =

N∑
j=1, j,i

H (yxij | |m | |s) · (−1)i>j

where (−1)i>j is equal to 1 if i > j, or to −1 otherwise. Note that
each user can locally compute his blinding factors by simply using
the public keys of all other users. Note also that for anym, we have∑N
i=1 bi [m] = 0, i.e., bi [m] is an additive random share of 0.

OPRF: We leverage the RSA-based OPRF in [34]. Given an RSA
triple (N ,d, e) where N is the product of two distinct primes of
sufficient length and d, e ∈ Z ∗

ϕ (N ) are such that ed ≡ 1 mod ϕ(N ),

the PRF on input x is defined asG(H (x)d ) where H : {0, 1}∗ → ZN
is a hash function mapping arbitrary strings to elements of ZN , and
G : ZN → {0, 1}l H : {0, 1}∗ → ZN is a hash function mapping
elements of ZN to strings of arbitrary length l . The oprf-server gen-
erates the RSA triple (via a suitable key-generation algorithm) and
publishes N , e while keeps d private. Given an ad URL x , the client
issues a request as x ′ = H (x)re . That is, the client maps x to ZN
and blinds the result by multiplying it with a random group element
r raised to the e-th power. The server “signs” the request by com-
puting y = (x ′)d . Finally, the server recovers y′ = y

r and outputs

4We note that in order to avoid a single point of failure, mapping function can be
distributed to multiple servers by defining F as the XOR of the output of multiple
OPRFs, each computed with its own secret key.
5The board may be as well hosted at the back-end server.

y = G(y′). Note that y′ = y
r =

(x ′)d

r =
(H (x )r e )d

r =
H (x )d r ed

r =

H (x)d since ed = 1 mod ϕ(N ). The protocol guarantees that the
server learns nothing about x whereas the client learns nothing
about d , and it is a PRF under the one-more RSA assumption [34].
CMS computation:Userui starts with an empty CMSXi . For each
newly received ad x , the user engages in an OPRF protocol with
the oprf-server to obtain the corresponding ad ID y, and encodes
y in the CMS by calling Xi .update(y). When asked to report its
CMS, the user blinds each cell of Xi with the blindings computed
as shown above. That is, the client computes the blinded CMS X̂i
by computing X̂i [j] = Xi [j] + bi [j] for 1 ≤ j ≤ m wherem is the
number of cells in the CMS. Finally, the client sends X̂i to the server.
Aggregation and unblinding: Finally, the server aggregates all
received CMSes by computing X =

∑
i X̂i where the sum is cell-

wise and, for each ad ID i ∈ {1, . . . |A|} it obtains the estimated
frequency by querying X.query(i).
Fault-tolerance:Our aggregation technique requires that all users
report their blinded CMSes, so that the server can aggregate them
and cancel out the blindings. If a user fails to report its CMS, ag-
gregation of the remaining ones at the server results in a CMS
with random noise in each of its cells. In order to tolerate miss-
ing reports, the server and the clients who have sent their reports
must go through an additional round of interaction to “adjust” their
blindings and cater for the blindings of the non-reporting clients
(see [42]). The protocol takes only two rounds—one where the
server reports the list of “missing” clients and another round where
the clients send their CMSes obfuscated with the updated blinding
factors.
Security: The security of our scheme follows from the security
of the protocol to compute blindings proposed in [37]. We tweak
the protocol by using an OPRF to map ad URLs to a set that is
enumerable by the server. By the security provisions of the OPRF
protocol, given an ad ID y, it is impossible to retrieve its original
URL without knowledge of the key held by the oprf-server.

We stress that our protocol remains secure against an honest-but-
curious server, and this is an assumption common to many other
systems that address privacy issues when computing statistics on
crowdsourced data [19, 37, 42].

7 EVALUATION
In this section, we first evaluate the overhead of our privacy pre-
serving protocol. Second, we present a controlled simulation study
to assess the robustness of our algorithm and the effect of key pa-
rameters on its performance. Third, we present a live validation of
the entire system with real ads and the 100 real users recruited via
FigureEight [27].

7.1 Performance and overhead of the privacy
preserving protocol

First, we assess the communication overhead due to the CMS and
compare it with the average communication overhead if clients were
to upload their contributions in cleartext.We fix δ and ϵ to 0.001 and
assume the size of a cell in the CMS to be 4 bytes. The size in bytes of
the CMS totals to 185, 196, and 207KB, for an input size6 of 10k, 50k,

6The number of ads to be counted.
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Figure 2: The effect of the privacy preserving protocol on
the computation of the #User distribution (number of users
who saw a given ad α ) and its threshold for three different
weeks.

and 100k, respectively. If users were to report their contribution in
cleartext, each user would simply report a vector of URLs. Since
our dataset suggests that users see 35 unique ads on average (Mean:
35, Median: 17), the communication overhead for the average user
amounts to roughly 3.5KB (assuming 100-characters URLs using
Unicode encoding based on our dataset analysis with 119 and 71
characters mean and median values, respectively). Nevertheless,
some users with a large number of ads to report can see their
communication overhead rise up to hundreds of KB (1.3% of the
users in our dataset reported around 250 unique ads).

Next, we assess the communication and computation overhead
required to compute the blinding factors. Exchanged data between
the server and a client amount to 0.38MB and 1.9MB for 10k and
50k users, respectively. The computation time at the client totals
30 seconds for 1k users and a sketch of size 5k. Our results are in
line with results reported in [42]. We stress that both operations
are carried out once per week and can run in the background.

Also, the time to map the URL of an ad to its ID, using the oprf-
server, is always less than 500ms and requires exchanging two
group elements (e.g., 1024 bits each). We stress that the mapping is
done once per (unique) ad. It can be carried out as ads are received
and results can be stored locally so that they are available when
the CMS must be computed.

Finally, we empirically show the effect of the privacy preserving
protocol on the computation of the #Userα (Number of other users
that receive ad α ) and its threshold (Usersth - See Section 4) using
the distribution of number of users per each ad α . Figure 2 com-
pares the distribution computed with cleartext reports versus the
distribution computed using the privacy-preserving protocol based
on (blinded) CMSes. The figure shows the difference using data
from three randomly selected weeks in our dataset. Furthermore,
the figure reports the threshold value computed on cleartext data,
and the threshold value computed on the outcome of the privacy-
preserving protocol. The latter leads to a slightly higher threshold
and this is due to the collisions that may happen when mapping ad
URLs to ad identifiers.

To sum up, the overhead due to privacy-preserving protocol does
not impose an unbearable toll on users. The protocol to map ad

URLs to identifiers is very lightweight and the mapping is carried
out as new ads are encountered. The protocol to report the CMS
requires a few (i.e.2 or 3) MB of data to be exchanged, assuming
50k users. This is done once per week and the communication
complexity scales linearly with the number of users. Further, the
error on the estimated distribution due to the privacy-preserving
protocol is small as shown in Figure 2.

7.2 Controlled simulation study
The count-based algorithm of Section 4.1 and its automated pa-
rameter tuning described in Section 4.2 can lead to false negatives,
i.e., targeted ads classified as non-targeted, and false positives, i.e.,
non-targeted ones classified as targeted. In this section, we study
the circumstances and the frequency of such misclassification via
controlled simulation experiments. Out of the two metrics, the most
important are the false positives. This has to do with a major use
case for eyeWnder, which is to report illegal targeting, as explained
in the introduction. Therefore, when eyeWnder classifies an ad as
targeted we want this to be precise with high probability so that
investigations are not triggered by mistake. On the other hand,
failing to detect a targeted ad is relatively less important since no
investigation is launched in this case.

7.2.1 False negatives. As described earlier, our algorithm uses
the fact that the same ad “follows” a user across multiple domains
as an indication of targeting. But how intense should this following
be before our algorithm has a chance to detect it? If a targeted ad
appears only once, then certainly it is indistinguishable from any
non-targeted ads. Considering the other extreme, if it appears in all
the pages visited by a user, then it obviously becomes easy to detect.
Next, we study the effect of the Frequency Cap i.e., the number of
repetitions (or re-appearances) of a targeted ad on the ability of
our algorithm to detect and classify it correctly. Notice that this
parameter is not known to us, nor uniform across advertisers and
therefore we study its effect in our simulation model by assigning
to it different values. The Frequency Cap is used by advertisers to
avoid annoying targeted users with too many repetitions of the
same ad. In our validation study appearing later in Section 7.3 we
demonstrate that our system is indeed robust to the magnitude of
values used in practice, but remaining unknown to us.

7.2.2 False positives. The same ad can be encountered in multi-
ple websites without being targeted. Such is the case, for example,
of large-scale “brand awareness” campaigns paid by large corpora-
tions to display their offering in many mainstream and even niche
websites without targeting any particular individual. Such ads will
appear to be chasing a user across websites, when in reality they
are not. Of course, our algorithm also checks to see that the ad is
not seen by many other users of eyeWnder, but non uniform user
interests can lead to misclassification as shown next.

7.2.3 Simulation results. Wehave built a custom simulator, based
on [15], capable of simulating users, websites, and ad campaigns.
The main parameters of the simulator and pre-set values for our
basic configuration, are depicted in Table 1. In total, we simulate 500
users visiting 1000 websites with 138 visits on average per website.
The average number of ads per websites is 20 from which 10% are
set to be targeted ads. The simulator and its input datasets and
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Table 1: Simulation configuration parameters

Variable name Value
Number of users 500
Number of websites 1000
Average user visits 138
Average ads per website 20
Percentage of targeted ads 0.1

parameterisation are publicly available for reproducibility tests and
for the benefit of other researchers [33].

Figure 3 shows that even few repetitions of a targeted ad make
it detectable by our algorithm with high probability. Setting the
Usersth and Domainsth,u thresholds according to theMean value of
the corresponding counters (see Section 4.2) brings false negatives
to below 30% with just 6-7 repetitions of an ad. Using as threshold
the Mean+Median value requires a higher number of repetitions
for detection but drops false negative even further to 10%. Our
experiments with real users in the next section are in agreement
with these results. In those experiments we set the thresholds using
Mean to make sure we can have detection even with a smaller
number of repetitions for a targeted ad.

Regarding false positives, we have run several different simula-
tions in which a subset of users visits a subset of sites that happen
to be running large static campaigns. These users get to see the
same ad in different websites not because they are being targeted
but because the ad happens to be in all the websites they visit. If
the remaining users (the majority) visits different websites, then
misclassification may appear for the initial subset of users. Still,
this happens with probability below 2% in more than 30 different
parameter configurations that we have tried. This result is also
validated by our experiments with real users.
Discussion:With an increasing number of users participating in
the system we can create different group of users (e.g., geographi-
cally or based on age group, etc.) in order to improve the ad clas-
sification performance as well as the performance of the privacy
preserving protocol. For example, in the case of geographical group-
ing we can easily identify targeted ads towards specific country,
ethnicity or religion (based on the majority of the population within
that region) by comparing ads across different regions.

In the case of the privacy preserving protocol, grouping can
bound the number of users participating in the protocol, thus, re-
ducing the effects of user churn. Another optimization with respect
to user churn is grouping based on user activity. In short, we can
consider only very active users within a group. This will have a
minimal impact on the threshold estimation since very active users
report higher number of ads (based on our dataset) and at the same
time it will reduce the number of round that the privacy preserving
protocol needs in order to converge.

7.3 Live validation of eyeWnder
Our simulation results have shown that when eyeWnder classifies an
ad as targeted then this is accurate with very high probability (false
positives <2%), whereas when it classifies an ad as non-targeted the
accuracy is again high (false negatives 10-20%). In this section we
want to validate the above results with a live experiment involving

1 2 3 4 5 6 7 8 9 10 11 12
Frequency cap

0

20

40

60

80

100

Fa
lse

 N
eg

at
iv

e 
%

Mean
Mean+
Median

Figure 3: False Negatives % Vs. Frequency Cap using two dif-
ferent thresholds (Mean, Mean+Median) for both variables
(#Usersα , #Domainsu,a)

real users and campaigns. This is inherently difficult due to the lack
of publicly available ground truth about which ads are targeted and
which not (see Requirements in Section 2.2). The situation becomes
even more challenging when the evaluation has to be performed for
a system used by real end-users (as opposed to offline evaluation
based on network traces), over a variety of ad delivery channels
(as opposed to a single channel, e.g., facebook ads [7, 49, 55]). Still
in this section we perform such a live validation and show that it
leads to consistent results with those of our simulation study.

7.3.1 Datasets. We use three different datasets. The first dataset
is created with the help of a crowdsourcing platform named Fig-
ureEight [27]. We collected data during three consecutive weeks
from a population of 100 users with varying level of activity. The
dataset includes in total 6743 ads. We call this dataset the “eyeWnder
dataset” and we use it as input to the count-based algorithm that
classifies the collected ads. In addition, we also ask the FigureEight
users to label the ads that they receive as targeted or not. For this
purpose, we instruct the users to provide labels to all the ads they
receive while surfing the web. We call this subset of labeled ads the
“F8 dataset”.

The last dataset we use is collected by the crawler during the
same three weeks. It includes several visits and ad collections to
any website in which eyeWnder has classified an ad7. We call this
dataset, “CR dataset” and use it to identify statically placed ads as
done in [17, 47].

7.3.2 Methodology. Figure 4 presents the work-flow of our eval-
uation methodology. The idea is to compare the classification de-
rived by eyeWnder against the classification from the crawled dataset
(denoted by CR in the figure), the classification from a content-based
detection heuristic (CB)8, and the classification from FigureEight
7Note that for evaluation we are using full information on our test users after having
been granted full consent. The privacy preserving protocol is developed for the actual
operation of the system beyond evaluation.
8We have adapted the methodology of [17] to operate with real users instead of
personas. For each user, we have selected the most significant categories of the pages
he visits to create his profile. We used categories appearing at least T times in different
websites. We have used T = 20 since in the context of this paper we are seeking
precision rather than recall. We classify an ad as targeted if the main category of its
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Figure 4: The evaluation tree for precision performance of the eyeWnder classification of targeted ads.

users (F8). These comparisons yield False Positives (FP), False Neg-
atives (FN), True Positives (TP), True Negatives (TN), as well as
UNKNOWN rates. As we will explain shortly, results derived by
comparing against the crawler are correct with high probability
(namely FP(CR), TN(CR)). Results derived by comparing against the
content-based heuristic or FigureEight are likely correct (namely
TP(CB), FN(CB), TP(F8), TN(F8), FP(F8), FN(F8)). The justification
for the above is that the content-based heuristic and FigureEight
are themselves subjective means of classifying an ad. Users have
limitations in detecting bias or discrimination [48], whereas the
content-based heuristic is just another heuristic whose validation
faces the same challenges with the validation of eyeWnder. In order
to ensure that user annotations are not random, we impose addi-
tional filtering steps before considering a user’s input as correct.
First, we exclude users with low number of annotated ads. Second,
we examine the temporal aspects of annotated targeted ads. In short,
if a user at some point in time identify an ad as targeted then the
following annotations should remain the same, if not, we consider
that the user is randomly annotating the ads and his input is ex-
cluded from the dataset. Since, however, the heuristic is a reasonable
one, and users have been selected carefully, we assume that their
classifications will be more right than wrong. Ads falling under
UNKNOWN are ads for which it is impossible to assess precision
by the previous means. We handle them separately in Section 7.3.3.
Next, we traverse the evaluation flow-chart of Figure 4 from top to
bottom, starting from the right branch.
Ads classified as targeted: If an ad is classified as targeted by
eyeWnder, we check to see if the crawler happens to see the same ad.
If this happens, then we have a false positive with high probability,
since targeted ads should not be encountered by a crawler having
empty browsing history.

landing page (as obtained from AdWords) matches one of the categories in the user
profile.

If the crawler does not see the ad, then we proceed to check if the
ad shares any semantic overlap with the user, using the methodology
described in [46]. If it does, then, and only then, we check to see
if the content-based heuristic also classifies it as targeted. We do
this check in order to identify the set of ads in which eyeWnder and
the content-based heuristic have a chance to agree. Such ads can
only be Direct targeted ads because the content-based heuristic can
only detect those (see Section 2.1). In our evaluation, we check for
semantic overlap using the content-based heuristic which implies
that if the ad has semantic overlap with the user, eyeWnder and the
content based heuristic will agree by default9 yielding a likely true
positive.

If an ad does not share semantic overlap with the user, we check
to see if FigureEight users have tagged it. Notice here that Fig-
ureEight users have classified only a subset of the ads that they
have seen. If they have not provided a classification, then the ad is
added to UNKNOWN. Otherwise, if their classification agrees with
eyeWnder, we have a likely true positive, else a likely false positive.
Ads classified as non-targeted: If an ad that eyeWnder classifies
as non-targeted is seen by the crawler, then this produces a true
negative. If the ad has semantic overlap with the user, then, as
explained before, the content-based heuristic will classify it as
targeted, thereby yielding a likely false negative for eyeWnder. If
the ad does not have semantic overlap with the user, we check to
see if FigureEight users have classified it. If they have not, it goes to
UNKNOWN. If they have classified as targeted, it produces a false
negative for eyeWnder. If they have classified it as non-targeted,
then we have a likely true negative for eyeWnder.

7.3.3 Dealing with the unknown. Due to the lack of ground truth,
a high rate of classified ads (148 targeted and 4219 non-targeted)

9It might appear as redundant to check both for semantic overlap and agreement
with the content-based heuristic, since we use the latter also for semantic overlap. We
have kept both stages for generality, since semantic overlap could be checked with
alternative methods than our content-based heuristic.
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have ended up in the two UNKNOWN groups of Figure 4, for which
we cannot evaluate precision using the crawler, the content-based
heuristic or FigureEight. In this section, we perform extra analysis
to resolve non-targeted UNKNOWNs into likely-TN or likely-FN,
and the targeted UNKNOWNs into likely-TP or likely-FP.
– Non-targeted UNKNOWN: In this case, both count-based and
content-based classification have identified these ads as non-targeted.
However, these ads were not manually tagged by FigureEight users.
Hence, we select a random set of 200 of these ads and manually
inspect them. In particular, we consider the profile of the user re-
ceiving the ad, in order to manually determine if the ad is targeting
such a profile. Furthermore, wemanually visit the websites at which
these ads appear in order to verify that they are indeed static. If
in all of our visits from different machines and browsers an ad
under examination remains visible, we verify that indeed it is a non
targeted ad.
– Targeted UNKNOWN: This group includes 148 ads that eyeWnder
classified as targeted, but CB and FigureEight users did not. Hence,
they may be either FP or some form of targeting (e.g., indirect) that
escapes CB or FigureEight users. A preliminary manual inspection
showed that several of them seemed to be retargeted ads [10]. To
verify this, we manually visited the landing page associated to each
ad, and afterwards we visited some of the domains where the ad
re-appeared according to our dataset. The experiment was set up
for testing the repeatability of the suspected retargeting. When the
experiment led to retargeting, it meant that our initial guess was
correct, and we considered the classification to be a likely TP.

For the remaining ads, we evaluated if they could be indirect OBA
ads. To this end, we performed a correlation analysis between the
topics of the ad’s landing page and the profiles of the users receiving
that ad. If there exists statistically significant correlation between
some of the ad’s and the user’s topics, but these topics are not
semantically overlapping, then we interpret it as likely indirect OBA
ad, and the classification is a likely TP. Some examples of ads that
we identified as indirect OBA are the following: (1) Male users who
exhibit interest in computers, electronics, cars, etc., but receiving
ads from a dating website (perhaps a classic indirect targeting of
single male users). (2) Users with interest in computers, electronics,
and programming, but receiving ads from KFC, a famous fast food
restaurant. (3) Users with interest in websites related to beauty
products, fitness, body care, etc., receiving ads related to seafood.
Finally (4) users who showed interest in governmental websites,
internet services, insurance services, etc., receiving ads related to
real estate and housing.

7.3.4 Results. The rates in Figure 4 along with the results from
our analysis of unknown ads reveal that the overall rate of likely TPs
is 78%. From these, 10% have been identified by CB or FigureEight
users. The rest are associated to retargeting or indirect OBA. Our
analysis also reveals a TN rate of 87%. In particular, 27% are highly
probable TNs, since these ads have been marked as non-targeted by
both, eyeWnder and the crawler. The remaining 60% are likely TNs.
This percentage has been derived from our manual inspection of
non-targeted UNKNOWN.

Based on these results, we claim that our method meets the high
precision requirement defined in Section 2, which guarantees that,

Table 2: Volunteers’ demographic break down

Age Default Below 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70
6,17% 4,82% 25,63% 32,37% 21,97% 6,74% 2,31%

Gender Default Undifferentiated Male Female
6,17% 2,50% 72,83% 18,50%

Employment Default Unemployed Student Employed Self Employed Retired
6,17% 6,36% 14,64% 56,45% 13,10% 3,28%

Income Default Below 30k 30k - 60k 60k - 90k 90k - 120k 120k+
48,17% 23,51% 20,81% 4,82% 1,73% 0,96%

for instance, users willing to report a privacy incident related to an
ad have high confidence that the ad is indeed targeted.

We acknowledge that there is still room for improvement, since,
as the evaluation shows, eyeWnder sometimes fails to detect ads
classified as targeted by CB (416) or F8 (91). This is mainly due to
two factors. First, as we further discuss in Section 10, we have eval-
uated eyeWnder with just a few users, which is close to a worst-case
analysis given the crowdsourced nature of the system. Second, eye-
Wnder has been configured to maximize the precision rather than
recall for reasons discussed in Section 2. We are confident that with
a bigger dataset, our existing count-based detection would perform
better. We could also come up with more elaborate heuristics to
improve performance. Our objective in this paper, however, is to
make the point that even with few users, simple count-based de-
tection yields precise classification for both directly and indirectly
targeted ads.
Evading detection of targeted ads: In this paragraph we discuss
the situations where advertisers are intentionally trying to evade
the detection of targeted ads. Our system is robust to that since there
is a lot of inherent randomness in the current way ads are delivered,
yet eyeWnder identifies such ads with good accuracy even with few
hundreds of users. For an adversary to defeat detection it will have
to effectively give up targeting or do it very mildly which would,
effectively, go against the very idea of targeting and his business
model. Furthermore, our intention is not to block any ads but rather
provide more transparency to the users from the viewpoint of an
independent entity. In doing so, we aim to complement related
industry initiatives such as YourAdChoices [57].

8 SOCIO-ECONOMIC BIASES
In this section, we leverage the social, economic and demographic
information we have from the volunteers and the datasets of Sec-
tion 7.3.1, to look for potential statistical biases related to the socio-
economic information of the users and targeted ads.

8.1 Logistic regression analysis
The demographic data provided by our volunteers include informa-
tion such as gender (G), age (A), income level (L), and employment
status (E), as depicted in Table 2 with the corresponding percentage
of users observed in our dataset for each attribute. Note that the
default bucket in Table 2 corresponds to users that did not want to
report any information related to the specific demographic option.
We want to investigate these independent, nominal and ordinal
factors, and how they associate with the type of advertisement
delivered to the participating users. In practice, the type of ad is the
dependent variable (D) in our model, receiving a binary status of
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Table 3: Logistic regression modeling for targeted ads

Variable OR SE Z-val P>|z| 95% CI

Gen
der female 0.255 0.407 -3.356 8e-4∗∗∗∗ 0.107-0.539

male 0.174 0.383 -4.566 5e-6∗∗∗∗ 0.076-0.348

Inco
me

30k-60k 1.446 0.145 2.538 0.0111∗∗ 1.088-1.924
60k-90k 1.521 0.187 2.249 0.0245∗∗ 1.052-2.187
90k-... 0.525 0.343 -1.878 0.0603∗ 0.257-0.996

Age

20-30 1.031 0.407 0.075 0.9404 0.488-2.450
30-40 1.428 0.405 0.880 0.3790 0.679-3.388
40-50 1.964 0.422 1.599 0.1098 0.899-4.788
50-60 0.745 0.489 -0.601 0.5475 0.291-2.022
60-70 2.654 0.477 2.044 0.0409∗∗ 1.069-7.087

OR: Odds Ratio, SE: Standard Error, CI: Confidence Interval
∗∗∗∗p < 0.001, ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

“static” or “targeted” advertisement. Using these input data, we per-
form a binomial logistic regression on the 4 independent variables
to model the 1 dependent variable, in the form: D ∼ G +A + L + E.

In reality, we tested several configurations for the model, includ-
ing pairwise interactions between all independent factors, as well
as removing incrementally each one of them to test if the model
improved its predictive performance. In fact, in the case of “em-
ployment status”, it was removed from the model as it was deemed
non-useful with an anova likelihood ratio test, with non-significant
impact in the final produced model. Here, we only report the exper-
imental setup that yielded a logistic regression model with most
statistically significant results, in form: D ∼ G +A + L, considering
0-30k and 1-20 the base levels for income and age, respectively.

8.2 Findings
The results of the logistic regression are shown in Table 3. Also,
in Figure 5 we plot the effects of the three variables and all their
corresponding levels, with respect to the expected probability for
a user to receive targeted ads. From these results, we make the
following observations:
– Gender bias: From our analysis, we find statistically significant
effect on the factor of gender. In particular, women are more likely
to be targeted by advertisers than men, and this result is significant
at p < 0.001.
– Economic bias: Our results show that as the income level of a user
increases from 30k to 60k , and from 60k to 90k euros, he or she is
more likely to be targeted by advertisers, and this is statistically
significant at p < 0.05. However, when the income level becomes
too high (i.e., above 90k euros), the expected probability of targeted
advertising is reduced. We conjecture that advertisers profile users
to construct economic capacities for each one, and adjust their
targeting campaigns accordingly to optimize click-through and
sale rates. Online advertisements targeting very wealthy users may
have proven to be less profitable than other income brackets, and
thus, such users are less targeted.
– Age bias: From the odds ratio scores, it appears that increas-
ingly older users are more probable to be targeted by advertisers.
However, some of the age brackets are less populated by ads and
users and thus, our results are not statistically significant, but only
demonstrate a consistent trend.
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Figure 5: Predicted probability for a targeted advertisement
to be delivered to a user, vs. three independent variableswith
statistically significant levels.

9 RELATEDWORK
Table 4 summarizes and compares existing proposals for detecting
targeted advertisements. From a methodological view, these solu-
tions can be grouped into topic-based [8, 17, 41, 47], and correlation-
based detection [21, 39, 40].

Topic-based solutions perform content-based analysis to extract
the relevant topics on a user’s browsing history and the ads he
receives. Then, using different heuristics and statistical means, tar-
geted ads are identified as those having topics that share some
semantic overlap with the user’s browsing history. Topic-based de-
tection could, in principle, be applied to real users, as we have done
for evaluation purposes in Section 7. Existing work, however, has
only used it in conjunction with artificially constructed personas,
i.e., robots that browse the web imitating very specific (single-topic)
demographic groups [8, 17], or to emulate real-users offline using
click-streams [41].

The only topic-based solution meant to be used by real users is
MyAdchoice [47], which has been implemented in the form of a
browser extension. This extension is available only under request,
and based on the information reported in the paper, it has been only
used in a beta-testing phase by few tens of friends and colleagues.
Independently of the specific pros and cons of individual solutions,
topic-based detection presents some common limitations. The most
important being that it can only detect direct interest-based targeted
advertising. It is unable to detect other forms of targeting based on
demographic or geographic parameters, as well as indirect targeting
(see Section 2.1 for definitions).

Correlation-based solutions treat the online advertising ecosys-
tem as a blackbox and apply machine learning and statistical meth-
ods to detect correlations between the browsing behavior and other
characteristics of a user (OS, device type, location, etc.) and the ads
he sees. For instance, XRay [39] and Sunlight [40] create for each
persona several shadow accounts. Each shadow account performs a
subset of the actions performed by the original persona. By analyz-
ing the common actions performed by shadow accounts receiving
the same reaction from the ecosystem (i.e., the same ad), the au-
thors can infer the cause of a targeting event. AdFisher [21] uses
similar concepts to find discrimination practices, for instance, in the
ads shown to men vs. women. As with topic-based detection, this
technique presents important challenges related to scalability and
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Table 4: Comparison of characteristics of main targeted ad detection solutions.

Datta et. al. [21] Barford et. al. [8] Liu et. al. [41] Carrascosa et. al. [17] Lecuyer et. al. [39] Lecuyer et. al. [40] Parra-Arnau et. al. [47] eyeWnder
Fake Impressions † † † † † † †

Click-fraud † † *
Privacy-preserving ✓

Real-users ✓ ✓
Personas • • • • • •

Operates in Real-time ✓ ✓
High scalability ✓ ✓
Operates Offline † † † † † †

Topic-based • • • •

Correlation-based • • •

Count-based •

† Negative, ✓ Positive, • Neutral, * Unspecified - (Within the context of this work)

practical implementation. Moreover, they are not suitable for real-
time targeting detection. With the exception of [47], no previous
work has been implemented as a tool for end-users. Most of them,
including [47], rely on content-based analysis, thereby suffering
from scalability issues and inability to detect indirect targeting.

Parallel to efforts from the research community, the European
Interactive Digital Advertising Alliance (EDAA) has developed
YourAdChoices [5]. It is a self-regulation program in which com-
panies that deliver targeted ads voluntarily add an icon that, if
clicked by a user, offers some form of explanation of why the user
received the ad. This technique scales and works in real time. It
only works, however, with companies participating in the program.
It also assumes full trust on the reported explanations, something
that has been challenged by recent works [21]. eyeWnder offers the
opportunity to conduct independent audits, which are useful for
end-users, data protection authorities, as well as for the credibility
of ad-choices and related self-regulation initiatives.

10 CONCLUSIONS AND FUTUREWORK
We have showed that a simple count-based heuristic can detect tar-
geted advertisingwithout having to perform complex content-based
analysis, i.e.without having to understand semantically webpages
or received ads. To be able to run such an algorithm, one needs a
crowdsourced database of how many users have seen each ad. Such
a crowdsourced database can be built efficiently and without jeopar-
dizing user privacy, i.e., without requiring users to report the actual
ads they have seen, nor the websites where they encountered them.
Our count-based heuristic and privacy preserving crowdsourced
approach have been implemented in a first of its kind distributed
system called eyeWnder, which allows users to audit any encoun-
tered ad impression in real-time to check whether it is targeted
or not. We have developed a detailed validation methodology for
the difficult problem of assessing the accuracy of an ad detection
method using only publicly available information.

Crowdsourcing simplifies the ad detection problem. Any crowd-
sourcing method, however, has two Achilles’ heels: privacy risks
and bootstrapping its user-base. We have addressed the first and
taken only very preliminary measures for the second. For example,
we circulated it among other researchers, and enlisting some users
for pay. This has permitted us to conduct a preliminary evaluation
of eyeWnder and show that the count-based approach is indeed
promising. Our current effort is to scale up our user-base. To do so,
we will use traditional means, e.g., seeking more exposure through

media, or getting help from data protection authorities to enlist
users. Scaling up the user-base will help us refine our count-based
ad detection method, evaluation, and probably yield many more
interesting findings. This, however, remains a task for future work.
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