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ABSTRACT
Online Behavioral Advertising (OBA) is an important

revenue source for online publishers and content providers.

However, the extensive user tracking required to en-
able OBA raises valid privacy concerns. Existing and
proposed solutions either block all tracking, therefore
breaking OBA entirely, or require significant changes
on the current advertising infrastructure, making adop-
tion hard. We propose Web Identity Translator (WIT),
a new privacy service running as a proxy or middlebox.
WIT stops the original tracking cookies from being set
on the browser of users and instead substitutes them by
private cookies it controls. Manipulating the mapping
between tracking and private cookies WIT maintains
permits transparent OBA to continue while simultane-
ously protecting the identity of users from attacks based
on behavioral analysis of browsing patterns.

Categories and Subject Descriptors

K.4.1 [Computers and Society]: Public Policy Is-
sues— Privacy; H.3.3 [Information Storage And Re-
trieval]: Systems and Software— User profiles and alert
services

General Terms
Algorithms; Security

1. INTRODUCTION

The massive growth of the web has been funded al-
most entirely via advertisements. Web ads have proven
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superior to traditional advertisements for several rea-
sons, the most prominent being the ability to show
personally relevant ads. To serve the most relevant
ads, web advertisement agencies rely on mechanisms
to uniquely identify and track user behavior over time.
Known as trackers, these systems are able to identify
a user via a variety of methods and over time build up
enough information to show user-targeted ads.

While trackers have enabled the free-to-use model of
the web, they also raises privacy concerns. These con-
cerns have led to the creation of client side applica-
tions that block trackers and ads, for example AdBlock.
While AdBlock has been quite successful in mitigat-
ing users’ exposure to trackers, by definition it prevents
the display of ads, and thus hurts web services’ revenue
streams. A tragedy of the commons around privacy can
thus become one of the main threats to the web’s sus-
tainability [6].

In this paper, we propose a new Web Identity Trans-
lation (WIT) service to balance the needs of users for
privacy and the needs of advertisers for information to
drive OBA. WIT is an active service running on a proxy
between users and web-sites that host tracking cook-
ies and OBA code. Unlike proposed solutions [2, 11]
WIT is transparent to trackers and does not require
any change in the infrastructure of the ad ecosystem.
Like Network Address Translation (NAT), it introduces
a mapping between private and public 3rd party track-
ing cookies. When a user’s browsing habits start mak-
ing him uniquely identifiable, WIT intervenes via the
private-to-public cookie mappings using one of several
policies aimed at restoring user anonymity within the
context of the OBA ecosystem. We evaluate 1) To what
degree does browsing history uniquely identify users?
2) To what extent can we intervene to reduce identi-
fiability? 3) Does this intervention allow advertisers
to infer user interests? With experiments performed on
two large datasets, we show that WIT can effectively
protect 70% of identifiable users while only intervening
on 10% of their requests. When WIT intervenes in 20%



of requests, it protects about 90% of identifiable users.

2. PROBLEM STATEMENT

2.1 Background on Online Advertising

Advertising Ecosystem: There are four main en-
tities in the advertisement ecosystem that we consider
crucial for WIT. The user, the publisher, the adver-
tiser and the advertising network. The user visits web
pages provided by the publisher, who in turn is paid
by advertisers to display ads. The advertising network
is the entity that coordinates the whole process. The
publishers, advertisers, and advertising networks have
a common financial interest to increase the probability
that a user actually clicks an ad (click through rate)
and makes a purchase. This is where OBA comes into
play, having been shown to significantly increase click
through rate [1].

User Tracking: For OBA to work, advertising net-
works need to track the activity of users across the web.
This is achieved via tracking beacons placed on publish-
ers’ websites. The tracking beacons are usually small
images embedded in the web page that trigger a request
to the tracker’s server. When a new user visits a website
that is tracked by an ad network, his browser down-
loads the image, and the server in turn sets a cookie
that is associated to this user. Subsequent requests to
any website where the ad network has access will return
the same cookie, therefore tracking the user across the
web. In this work, we only deal with the traditional
web cookie as a tracking mechanism, however WIT is
not fundamentally tied to cookies and can operate on
any form of unique online identifier.

2.2 The Behavioral Re-identification Problem

The introduction of private cookies and their mapping
to external public ones in WIT can protect users from
several types of privacy leakage. We now focus on the
Behavioral Re-identification Problem, described next.

Personally identifiable information (PII) can be leaked
through a variety of means, e.g., passing email addresses
or real names as HTTP arguments after filling in web
forms [6]. When such PII leakage occurs in a page host-
ing tracking cookies, trackers can associate the real-
world identity with online presence at any web sites
the cookie is observed. This is a very serious threat to
one’s privacy. Notice here that online behavioral tar-
geting does not really need the association between the
PII and the cookie; it just requires a constant identifier
(e.g., a cookie) to be able to say that user X seen at
foo.com is the same one now visiting bar.com. Such a
constant identifier is effectively anonymous if not con-
nected to PII.

This means that as long as users make sure that PII
does not leak, then OBA can be carried out while the
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Figure 1: CDF of pairwise similarity scores of
user browsing histories for our datasets.

users remains anonymous. Eliminating all PII leakage
however is quite difficult and in many cases impossible
to achieve without breaking much of the web’s usability.
An alternative to blocking all PII is to just monitor for
leakage, and when it occurs clear all cookies to prevent
matching the user’s PII with past and future browsing.
For this to work however, one has to protect against
search and re-identification of individuals with leaked
PII. The tracker already has a sample of the behavioral
pattern of this named user. Even if the user clears all his
cookies, as soon as he accepts a new cookie from a site
that the tracker operates on he risks re-identification
and re-association to his real-world identity through a
simple comparison of his sampled behavior as a known
user and his newly accumulating behavior under the
new identifier (cookie). In fact, re-identifying a user by
comparing profiles associated with different cookies is a
corner stone of the burgeoning cross device identifica-
tion industry [4].

Thus, the overarching threat to identity privacy is
the linking of online behavioral profiles to an individ-
ual user. As we explain in the next section, WIT ad-
dresses this threat model by ensuring that profiles track-
ers build up are not uniquely identifiable, yet still con-
tain useful behavioral information.

2.3 The Severity of Unique Identification

At the core of the re-identification problem is the sur-
prising “uniqueness” of browsing profiles using e.g., fre-
quency histograms of visits to web-sites hosting track-
ing cookies. To demonstrate the severity of the prob-
lem, Figure 1 plots the distribution of pairwise similar-
ity scores for the browsing behavior of all users across
each of our datasets (see Section 4 for dataset details).

From the figure we make several observations. First,
both datasets show a median pairwise similarity score
less than 0.01. Ie., when comparing the similarity in
browsing history of any two randomly selected users,
there is a 50% chance it will be less than 0.01. Thus,
we conclude that users are extremely unique when com-
pared to any other given wuser, also recently observed





by [9]. However, there is a long tail of user pairs that
have an order of magnitude more than the medium sim-
ilarity. As explained in the next section, WIT can ex-
ploit this phenomenon of two users being much more
similar than they are to other users to “hide” a user
among others.

3. WEB IDENTITY TRANSLATOR

As we just saw, users have distinctively unique brows-
ing patterns and this can be used to re-identify them
even after they have flushed old tracking cookies and
substituted them with new ones. Still, they are suf-
ficiently similar to permit relatively small alterations
to their true browsing pattern to conceal them among
other users. WIT leverages this observation by interven-
ing on a user’s browsing behavior visible to a tracker,
preventing him from becoming uniquely identifiable.

3.1 Terminology

Browsing history: A user’s browsing history is a
vector of domain and visit frequency tuples over a given
time period. This need not be all the domains that a
user has visited but those where a certain tracker that
is attempting the re-identification attack is present with
tracking cookies.

Signature: A user’s signature is browsing history
collected over some time interval in the past. During
this interval the attacker has constructed the behavioral
patterns of the user. An attacker can search for this pat-
tern in arbitrary page visiting logs and re-identify the
user even if the latter has changed cookies in between.
This can also be used to match users between devices.

Similarity: Similarity is a measure of the “closeness”
of two users. In this paper, we use 6(hq, ha) to represent
the similarity between two browsing histories. We give a
detailed explanation of the measure we use in Section 4.

Similarity rank: In this paper we use the ranking
of similarity scores between histories as a measure of
re-identifiability. When we say rank(0(hi, he)) = k we
mean that hs is the kth most similar history to hy (with
k = 1 meaning it is the closest).

3.2 Architecture

WIT is analogous to NAT in networking. Figure 2
shows a high level view of the WIT architecture. Much
like NAT projects private IPs addresses into the pub-
lic IP address space and manages the mapping between
them, WIT manages mappings of private and public
cookies. The cookie setting/reading mechanism works
as usual. A web-site sets a standard (public) cookie on
a client visiting for the first time but this cookie is in-
tercepted by WIT and thus never reaches the browser.
Instead WIT creates a corresponding private cookie, as-
sociates it with the intercepted public one, and sets it
on the user’s browser. Inversely, when the user returns
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Figure 2: High level overview of the Web Iden-
tity Translator architecture.

to a web-site that hosts the same tracker, WIT realizes
it and returns the same public cookie that the tracker
thought it set on the user’s browser.

WIT can be implemented in any middlebox or proxy
that sees HTTP traffic of users. This includes CDN
nodes or caches, acceleration proxies for wired or wire-
less networks, or VPN proxies. The latter are increas-
ingly popular and can permit WIT to operate seam-
lessly even if end to end HTTP encryption is enabled
as is the trend lately [8].

When WIT receives a request from a new user, it
places him in the quarantine phase, where all tracking
is blocked until a browsing signature is collected. This
signature is stored as a history vector and will be used
to make intervention decisions later on, based on the
ranking of WIT’s private cookies with respect to this
signature. How long a user should be kept in quarantine
needs to be further evaluated, but for this paper, with
respect to identifying user patterns, a week’s worth of
browsing has proven sufficient and it is likely that even
less is required.

Once there is sufficient data, the user enters the triage
phase. This is an active monitoring phase, where we ex-
amine the effect each request has on potentially assist-
ing the de-anonymization of a user. In order to avoid
this, we monitor users during the triage phase, and in-
tervene only if their current history ranks among the
top k histories with respect to their signature. During
the triage phase, multiple history vectors could be as-
sociated with a user. These history vectors correspond
to a public cookie, and represent what information has
been allowed to pass through to the tracker. The triage
phase is responsible for guaranteeing that none of these
history vectors can be linked with high probability to
the signature vector of the user that is associated with
them. The general trigger depends on the exact policy
used (described in the next section) but revolves around
the ranking of users.

3.3 Intervention Algorithms and Policies

The main idea behind WIT is to protect users against
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Figure 3: High level sketch of WIT’s History
Padding algorithm.

the attack presented in Section 2.2 and described in [7].
This attack attempts to rank users based on the similar-
ities of their signatures so that they can match histories
to actual users. To mitigate this, WIT maintains the
rankings of all users and attempts to stop their histo-
ries from ranking very high with their signatures, thus
being identifiable. By reducing the rank of a user below
a threshold x, we reduce the probability of an attacker
successfully identifying him. The appropriate threshold
is a subject for future evaluation.

In this paper we focus on two specific intervention
policies: 1) cookie drop and 2) history padding.

Cookie drop: The cookie drop intervention algo-
rithm simply refuses to return the public cookie associ-
ated with the user. In essence, this results in a partic-
ular request being associated with a “new” user instead
of the profile of the user himself. The decision to drop
a cookie is made by calculating the ranking of the cur-
rent history as it has been allowed to leak against the
signature WIT collected during the quarantine phase.
If a request causes the rank to drop, the request is al-
lowed to pass; if the rank increases, the tracking cook-
ies associated with this request are dropped. A sin-
gle request rarely affects the ranking, and when it does
not §(6(sig,u’),0(sig,u)) is calculated. If it is negative,
therefore driving the user away from his signature, the
cookie is allowed to pass while in the opposite case it is
dropped.

History padding: The history padding algorithm is
more complex, yet provides superior performance. The
advantage with history padding is that WIT can take
an active approach in obfuscating users, instead of the
passive approach of cookie dropped. As requests ar-
rive, if the current history of a user is determined to be
ranked below a x threshold, WIT searches through the
history of the xth ranked user for a request that, when
added to u’s browsing history minimizes the function:

5(0(sig,u'),0(sig,u)) — 5(0(v,v),0(u,v))

, where v’ is u’s history with the addition of the candi-
date URL from v’s history and ¢ is the (signed) differ-
ence between two similarity scores

Figure 3 sketches a high level view of the history
padding algorithm. The core idea behind history padding
is to choose the optimal intervention that increases the
distance of a user from his signature while simulta-
neously decreasing the distance between the user and
kth ranked user from the signature. Another way of
putting it is that WIT decreases the similarity of the
user and his signature and at the same time increases
the similarity of the user and the user that has the kth
ranked similarity score with the signature. Eventually,
this push and pull mechanism results in the user’s re-
identification rank increasing, making him exceedingly
hard to manually re-identify.

4. EVALUATION

In this section we present an evaluation of WIT. We
begin by presenting our datasets, evaluation metrics,
and experimental setup before moving on to results.

4.1 Datasets

D, from [5] is composed of browsing history donated
by Firefox users. It includes all the pages that the
users visited, both HTTP and HTTPS. The dataset is
made available in obfuscated form where user ids and
the URLs they visited are hashed. We make use of one
month of data consisting of 6 million total requests from
529 users.

D5 is derived from traffic logs of a vpn proxy for mo-
bile users operated by a large telecom provider in Eu-
rope. This dataset represents mobile traffic over the
proxy but does not include HTTPS traffic. Users are
identified with an internal proxy identifier that is not
linked to any personal information. In total we use ap-
proximately 3 weeks of data, consisting of 2.5 million
requests from 730 users.

4.2 Metrics

The most commonly used metrics in user similarity
studies are Jaccard index and cosine similarity. The
problem with Jaccard index is that it operates solely on
set membership and therefore cannot capture properties
like frequency/popularity. For this reason, we use the
Vector Space Model as a representation of users’ histo-
ries and cosine similarity with #f-idf weights to calculate
similarity. Tf-idf is widely used in information retrieval
and it manages to reduce the impact of very popular
terms. For two users u and v, their similarity is calcu-
lated as follows:

9 . Z?:l Ui X Vg
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The values of the attributes u;, v; are the corresponding
tf-idf values. For example:

N
df; +1



Where tf; is the number of times user u has visited
webpage i, N is the total number of users and df; is the
number of users who have webpage 4 in their histories.

If two users visit the same set of websites the same
number of times in a given time period, their cosine
similarity will be 1, and if there is no overlap in their
browsing history it will be 0. It is important to note that
in this work we operate on the domain level, meaning
that each attribute corresponds to visits to domain and
not a full URL. We do this for two reasons: 1) using
only domains highlights similarity and repeated brows-
ing patterns, and 2) from a semantic point of view, it is
often times more relevant that a user has visited a given
site instead of any particular page on that site. That
said, in the future we will examine methods of improv-
ing the granularity of the browsing history, e.g., using
semantic value of subdomains or content on pages.

4.3 Experimental Setup

We simulate the function of WIT by replaying re-
quests from our two datasets. We split each dataset in
two parts, one which will be used for the quarantine
phase and one which will be used for the triage phase
when the system starts intervening on users’ histories.
The simulation starts by reading the quarantine part of
the logs and storing the corresponding vectors. Once
the quarantine is over, the remainder of the dataset is
read line by line, simulating the requests as they would
arrive in a proxy. For this work, we evaluate the cookie
drop and history injection policies, therefore a one to
one mapping is always maintained between public and
private cookies. Our experiments are designed to deter-
mine if WIT can effectively push users away from their
signatures and how much intervention was required.

4.4 Results

Figure 4 plots the distribution of rank(0(sig,,u)) as a
function of the number of request having passed through
WIT during log playback. The x-axis represents the
cumulative number of requests handled by WIT and
the y-axis is the rankings of the public history vectors
with respect to their respective signatures used for re-
identification. Each panel represents a different data
set/policy combination.

First, we observe that with the control policy, which
shows how users naturally rank with respect to their
signature without intervention, essentially all users rank
lower than 10 for both datasets (median rank of 1 for
D; and 2 for Dy). This means that if an attacker uses
an already known signature of a user to search in a
new dataset he will be among the 10 closest matches.
Although not plotted, the cookie drop policy was able
to improve upon the control with a median rank of 2 in
D1 and 4 in DQ.

Looking at the History Padding results, we see sub-

stantial improvement. When allowing WIT to make
as many interventions as necessary (panel “HPad”), the
median user rank reaches (and stays above) 10 within
50,000 simulated requests. Further, even the 25th per-
centile is relatively close to 10. Notice here, that for
some users, it is close to impossible to hide them among
others. This happens if their accumulated profile dur-
ing the training period is distinctively different from
anybody else. In that case even if WIT intervenes in
all subsequent requests they can still remain close in
rank to the original signature used by an attacker to
re-identify them.

Next, we place restrictions on the maximum number
of allowed interventions per user (panels “HPad 10%”
and “HPad 15%”). When WIT intervenes 10% of the
time, we see median ranks of 6 and 8 for D; and Do,
respectively. When WIT intervenes on 15% of requests,
we see medians of 8 and 10. Placing such constraints of
course limits the ability of WIT to hide users (the 25th
percentile is still 1 for D; and slightly increases to 2 for
D5) but WIT is still quite successful in protecting the
majority of users from re-identification.

S. DISCUSSION AND CONCLUSION

Impact on Advertisers: WIT is designed to bal-
ance user privacy and utility to advertisers. This means
WIT’s interventions should not stop the effective target-
ing of users with relevant ads. We have already shown
that with a rather limited number of interventions (10-
15%) WIT protects the majority of users which is a sign
that damage to ad profiles is small: advertisers still get
to see most of a users’ original requests. Next we show
preliminary validation that WIT does not significantly
impact advertisers. We manually played back both the
original and WIT intervened histories for three users
that WIT appeared to have significant impact on. We
then checked the interest tags of the histories via the
BlueKai registry, which allows users to see their tags
collected by the BlueKai tracking service. Although
not a perfect measure, if a user’s original and modi-
fied browsing histories have similar tags, it indicates a
minimal effect on advertising.

Table 1 shows differences in interest tags returned
from raw and intervened user histories for three high-
lighted users. We note that with the exception of one
user, WIT intervened histories returned all the tags
from the raw histories. While there were some addi-
tional tags returned, they are related to the original
history’s tags. As future work, we are developing a
large-scale, automated system to evaluate WIT’s im-
pact on interest tags.

Deployment optimizations: It might seem that
WIT faces scalability challenges due to the computa-
tion of cosine similarities and ranks between users and
signatures. Although we leave a full implementation to
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Figure 4: The evolution of re-identification rank over time.

Interest Tag User 1 | User 2 | User 3
Broadband v

Cell Phones & Plans o

Country v v v
Demographic v o
ISPs o

Language Speakers v o
Mobile Phones v

Online Radio v
Technology v

Table 1: Interest tags returned before and after
WIT intervenes for three users. v means both
histories had the tag and o means only the in-
tervened history had it. NB: Country and Lan-
guage Speakers have been anonymized.

future work, we will sketch some ideas of why it can be
scalable in practice. The key to scalability is that we
only need to “hide” a given user within a small subset
of users, which means that we do not need to compute
distances to all other users. If the user is hidden within
this small subset (one for which computation is feasi-
ble), then the user is effectively hidden in any larger
group of users (e.g., those of a telco), including all users.
While the attacker is assumed to have access to the en-
tire population, since they have no idea of the subset
WIT intervenes on, they are left with what amounts to
a % chance of randomly re-identifying the correct user.

We can further improve the efficiency of WIT in a
variety of ways. First, we can subsample requests (i.e.,
WIT only intervenes every S > 1 requests). Second, we
can do lazy updating of the ranking computations (i.e.,
rankings will only be updated every ¢ time intervals or
every S requests). Next, we can cluster users (i.e., com-
puting rankings over groups instead of individual users)
or make use of smarter data structures and algorithms
for streaming data, e.g., [10].

Balancing advertising and privacy: While WIT

as presented performs quite well at balancing privacy
and advertising needs, improvements can be made. For
example, the current algorithm is greedy and biased
towards preserving privacy. To address this, instead
of intervening with the URL that most improves pri-
vacy, WIT could be augmented to make use of seman-
tic information about the URLs that are requested and
choose to intervene with one that maintains the same
set of behavioral profiling tags attached to the user. By
changing the weight given to improvement of identifi-
cation privacy vs. accuracy of behavioral tags, WIT
can provide an easy to tune privacy preserving mecha-
nism while still providing advertisers with relevant user
knowledge.

Additional policies: We plan to explore a policy
where an offending request will trigger creating a new
pseudonym [3] for the user. WIT then balances re-
quests using multiple pseudonyms to ensure privacy is
preserved. Another policy cookie swap, will transmit
the cookie of a different but relatively similar user, thus
obfuscating the original user’s behavior. Cookie swap is
basically the inverse of history padding: instead of tak-
ing a request from another user’s history, WIT inserts
a request into another user’s history. A combination of
policies could maintain advertising utility while offering
strong privacy guarantees. We leave the evaluation of
these policies to future work.
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