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Abstract—Networks-on-Chips (NoCs) are experiencing escalating sus-
ceptibility to wear-out and reduced reliability, with the risk of becoming
the key point of failure in an entire multicore chip. Aiming towards
seamless NoC operation in the presence of faulty communication links,
in this paper we propose Hermes, a highly-robust, distributed and
lightweight fault-tolerant routing algorithm, whose performance degrades
gracefully with increasing faulty link counts. Hermes is a deadlock-
free hybrid routing algorithm, utilizing load-balancing routing on fault-
free paths to sustain high-performance, while providing pre-reconfigured
escape path selection in the vicinity of faults. Additionally, Hermes
identifies non-communicating network partitions in scenarios where faulty
links are topologically densely distributed. An extensive experimental
evaluation, including utilizing traffic benchmarks gathered from full-
system chip multi-processor simulations, shows that Hermes improves
network throughput by up to 3× when compared against prior-art.

Keywords - Network-on-chip, chip multi-processor, fault-tolerance,
routing algorithm, reliability

I. INTRODUCTION

Multicore chips such as Chip Multi-Processors (CMPs) [30]

employ Networks-on-Chips (NoCs) as their interconnect architecture

of choice to provide efficient on-chip communication. Unfortunately,

at deep sub-micron scales on-chip components become increasingly

unreliable and susceptible to permanent faults, with the International

Technology Roadmap for Semiconductors (ITRS) [27] projecting a

10-fold increase in CMOS wear rate in a 10-year span. While device

failure rates will keep increasing at future CMOS technologies, multi-

billion transistor chips containing faulty components will be expected

to operate transparently as being reliable and fault-free [8], [22].

In CMPs, transistors found in processing cores, cache memory,

and on-chip network routers may equally fail permanently due to

time-dependent physical wearout effects such as hot-carrier degrada-

tion and oxide breakdown [5], that may in turn quickly manifest to

architectural-level failures. Individual core wear-out or failures in on-

chip memory modules, however, may not be unavoidably disastrous

to the CMP’s full-system functionality as cores and memory cells

are inherently redundant to a particular extent [25]. With some

cores or memory cells failing, the multicore system may continue

operation with a preserved correct functionality, albeit at a degraded

performance mode, given that error detection and recovery techniques,

such as fault-tolerant task migration, core- and cache-level error

isolation and masking, and relevant OS support, are applied [22].

NoC routers, however, enjoy crucially less redundancy vs the

rest of the multicore chip components. Even an isolated intra-router

or communication link failure can turn a static regular topology

into an irregular one with an unplanned geometry. Hence, either

physical connectivity among network nodes may not exist at all due

to the presence of faulty links and/or routers, that may even cause

entire sub-network areas to detach from each other forming isolated

partitions, and/or the associated routing protocol may not be able to

advance packets to their destinations due to protocol-level breakdown.

Traffic-induced back-pressure, then, causes accumulated congestion,

possible traffic deadlocks, and even the entire multicore system to

stall indefinitely rendering it inoperable. Hence an NoC failure, can

become the entire multicore system’s single fatal failure.

A. Hermes: Synopsis and Contributions

A key operational stress-induced wear mechanism in current and

future CMOS technologies is electromigration (EM). EM causes

material deformations and consequently the loss of connections in a

circuit [4], assessed by the ITRS 2009 Interconnect Report [27] as the

main cause of on-chip metal interconnect reliability loss. Enormous

data transfer rates, as in the case of high speed/high-throughput metal

wires in NoC links, cause thermal stressing which amplifies EM.

In an effort to establish inter-router communication resilience and

hence to sustain seamless NoC operation in the presence of faulty

links, we propose Hermes1, a top-performing and highly robust dis-

tributed fault-tolerant routing algorithm that bypasses faulty network

paths/regions/areas at a gracefully performance-degrading mode with

increasing faulty link counts. Hermes employs a dual-strategy routing

function that is agnostic of the current topological region’s state:

in the region(s) where only healthy links exist, by default, Hermes

utilizes either XY Dimension-Order Routing (DOR) or load-balancing

O1TURN routing [28] to sustain high throughput, while it provides

pre-calculated escape path selection in the vicinity of faults, with

routing information distributed in tables at each router. To achieve

the latter, it employs up*/down* routing, a topology-discovering

strategy that can be tailored to be deadlock-free, ideal for achieving

fault-tolerance in NoCs. Further, works which propose intra-router

redundancy-based wear resilience, such as in buffers [12] and router

ports [14], equally pivotal to an NoC’s operational robustness [22], are

complementary and can be orthogonally applied to Hermes’ scheme

to further extend an NoC’s operational lifetime.

To guarantee deadlock-freedom, no switching from up*/down*

routing to either DOR or O1TURN routing is allowed, where the

latter two are the default routing choices upon packet injection. With

new faulty link(s) appearing in the topology, the up*/down*-based

routes are no longer valid and new ones have to be reconfigured;

the network is frozen, and using topology-scanning flags that spread

synchronously from the new faulty point, analogous to the Ariadne

re-configuration scheme’s approach [1], Hermes discovers the latest

inter-connectivity form and updates each table with relevant route

information. Once completed, the NoC resumes operation until a new

faulty link(s) appears in the topology, where the process is repeated.

1In Greek mythology Hermes was an Olympian God, who among many
roles, he was protector and patron of travelers.



Hermes is geared towards 2D mesh-interconnected NoCs, and

while its up*/down* faulty path discovering/bypassing reconfigura-

tion process is based on that of Ariadne’s elegant approach [1], it

encompasses a number of extensions and distinct contributions:

1) Its two synergistic routing functions achieve significantly

higher and linearly-degrading performance with increasing

faulty link counts (Section IV) vs prior-art [1], [23].

2) It illustrates that Virtual Channel (VC) classification with

regard to the underlying state of the routing path, i.e.,

encountering healthy vs faulty links, offers far-improved

performance than in non-classified use of VCs, i.e., VCs

being used without restraint by a single routing scheme

whether traversing fault-free or faulty paths (Section IV).

3) It is a purely hardware-based approach and does not

employ non-deterministic execution time iterative software

kernels to discover fault-free routes, during which the entire

multicore chip is temporarily inoperable [23].

4) Hermes identifies network segmentations using network-

spreading topology-scanning flags. The CMP operating sys-

tem may then utilize this information to mark sub-network

borders, enabling the assignment of independent processes

and threads to each network partition [8] (Section II-D).

B. Hermes’ Major Features and Attributes

Hermes meets all design challenges and satisfies the ideal ob-
jectives of a well-designed fault-tolerant routing protocol [32]. First,

Hermes establishes fault-tolerance bypassing a high number of faulty
links that can form any topological fault region with no faulty link

spatial placement restrictions and healthy link victimization to achieve

deadlock-freedom vs works in [6], [10], [32]. Given a realistic
minimally-connected path scenario, Hermes maintains feasibility in

packet delivery given that any physical connectivity exits (Section II).

Hence, Hermes adapts to the state of the topology, where any spatial

permutation of healthy and faulty links can exist. Second, it is

deadlock-free, where no packets can be involved in a deadlocked situ-

ation which can halt the flow of packets and stall the CMP’s operation

indefinitely (Section II-E), while establishing short routes, devoid of

livelocks. Third, Hermes is distributed, where each node individually

directs its packets towards their next-hop router, with no global infor-

mation maintenance concerning the number and spatial distribution of

faulty links (Section II). Fourth, it supports load-balancing in fault-

free regions so as to maintain improved performance, detailed in

Section II. Next, Hermes is lightweight, demanding reasonable area
and power overheads, while keeping the base pipelined wormhole

router’s critical path unaffected (Section IV-D), and finally, Hermes

can handle dynamically-occurring (run-time) faults. Although in most

previous works some of the aforementioned objectives can conflict

each other [6], [10], [32], to our best knowledge Hermes may be the

first FT routing algorithm for NoCs to satisfy all of them.

Next, Section II details Hermes’ routing algorithm and sub-

network detection mechanism, while Section III presents its micro-

architecture. Following, Section IV evaluates Hermes, while Sec-

tion V presents related work. Finally, Section VI concludes this paper.

II. HERMES ROUTING ALGORITHM

With any NoC link becoming faulty, Hermes’ reconfiguration

process is initiated to discover and mark faulty links, then update

routing tables distributed at each router so that they can steer traffic

towards their destinations in an irregular interconnect geometry.

Following Ariadne’s reconfiguration scheme [1], route discovery

depends on atomic flag broadcasts conforming to up*/down* routing

rules, originally utilized in topology-irregular networks of worksta-

tions [16], [26], which we adopt to 2D meshes common in silicon-

planar NoCs [30]. Up*/down* was chosen as it is topology-agnostic

and ensures acyclic path formations devoid of deadlocks. Once the

tables are updated, with the entire path discovery process guaranteed

to complete in N2 cycles in an N-node network, NoC operation

resumes until a new faulty link(s) appears. Any faults in a router’s

datapath which can block access to links even when being healthy,

including upstream and downstream buffers, control logic, and intra-

router crossbar connections, are regarded as an extension to the

link(s) connected to them, inevitably designating that link(s) as also

being non-healthy and unusable [23]. Hermes’ reconfiguration process

is specifically geared for 2D mesh-based NoCs, where up*/down*

optimizations were appropriately inherited from tactics found in [26].

A. Routing in a Non-Faulty Topology Region

Hermes combines two network routing strategies. In a completely

fault-free topology, or fault-free region encountered at packet injec-

tion, Hermes uses either DOR-XY, dubbed as H-XY, or partially

adaptive O1TURN [28] routing, named H-O1T. Under H-O1T, upon

network ingress, a packet is granted a 50% probability of utilizing

either XY or YX routing as a means of balancing network load. H-

XY uses 2 Virtual Channels (VCs) at minimum, while H-O1T uses 3

VCs at minimum. Either of these routing schemes is followed until a

faulty link is encountered, where routing switches to pre-configured

up*/down* rules exclusively until network traffic egress.

Hermes utilizes two variants of up*/down* routing: bidirectional

up*/down* routing as used in Ariadne [1], where even when one of

the two unidirectional links in a link-pair is faulty then both are con-

sidered faulty, and the upgraded up*/down* scheme of uDIREC [23]

that marks faulty links unidirectionally in a link-pair, hence incurring

milder healthy link victimization. The uDIREC-based Hermes vari-

ants are equivalently dubbed H-uXY and H-uO1T. However, uDIREC

requires iterative software kernels to form unidirectional up*/down*

paths, and since Hermes is purely hardware-based, following we focus

on utilizing Ariadne’s up*/down* scheme [1]; H-uXY and H-uO1T

are solely employed in our performance tests in Section IV.

B. Routing in a Faulty Topology Region: Reconfiguration Algorithm

A packet switches to up*/down* routing (from XY or O1TURN)

and occupies its associated VC, only when it encounters a faulty

link in its path, and keeps following its rules until its ejection to

ensure deadlock-freedom (Section II-E). The reconfiguration process

begins upon the detection of a new faulty link(s), at which point

the router to which this link is connected becomes the root node

(initiator). It begins broadcasting Direction-Recoding Flags (DRF)

to all of its output ports connected to a healthy link that lead to

associated next-hop routers to discover the topology’s connectivity.

Flags are spread using a 2-bit overlay control network, which sits atop

the data network, to ensure all-to-all node flag transmission/reception.

The concept is that, upon reception of these DRF flags, the next-hop

neighboring routers record the healthy input port through which the

local DRF had arrived into their routing tables so as to designate the

direction (port) that leads them back to the root (broadcasting) node.

Simultaneously (where applicable), Hermes broadcasts Alert Flags

(AF) using the same control network to discover network partitioning,

detailed next. Once a root node completes reconfiguration, the remain-

ing N−1 nodes individually become root nodes, so that all nodes will

eventually discover how to reach each other. Each node carries the



following five-stage process (Fig. 1), requiring control information

bookkeeping and handling of reconfiguration orchestration among

routers (stage actions 1 and 5, and AF flags are unique to Hermes,

while stage actions 2-4 are inherited from Ariadne [1]):

• Action 1. Flag/sub-network detection: Identifies whether

a node receives a DRF or an AF flag.

• Action 2. Entering Recovery: A network node enters into

recovery mode, invalidates its existing routing tables, freezes

its pipeline and stops injecting traffic into the network.

• Action 3. Tagging Link Directions: Up*/down* marks all

adjacent links of a node as either “up” or “down.”

• Action 4. Routing Table Update: Information regarding

which port can be used to reach the current broadcasting

node is recorded into the current DRF-receiving node’s

routing table.

• Action 5. Flag Forwarding: Forwards the reconfiguration

flag according to the link status between each node-pair

(healthy=DRF flag, faulty=AF flag). When a node is in

recovering mode the AF flag is always ignored since the

reconfiguration process has already begun.

When the root node finishes broadcasting, the remaining N − 1

nodes broadcast individually. All five actions are carried out during

the first broadcast, while only actions 4 and 5 are carried out during

the remaining N −1 broadcasts. Action details follow next.

Flag/Sub-Network Detection - Action 1: The 1-bit DRF and

1-bit AF flags are broadcasted starting from the root; DRF flags are

propagated only atop healthy links, while AF flags are transmitted

only atop faulty links connecting two routers via the 2-bit overlay

network (assumed to be always functional with triple modular redun-

dancy). The use of DRF flags is to discover connected paths among

all source-destination router pairs, while the AF flags mark possible

boundaries of network partitions/segmentations. The essence here is

that AF flags always follow minimal paths, while DRF flags may

follow non-minimal paths due to the presence of faulty links; hence

AF flags may arrive earlier at a router, alerting the router that it may

possibly belong to a physically disconnected network segment. If a

router eventually receives a DRF flag from the root, while it had

received an AF flag earlier, this ensures that a physical path does

exist starting from the root, and the AF flag is ignored canceling

the previously set network segmentation alert. Otherwise, the node

remains in its network segmentation alert mode (Section II-D).

Entering Recovery - Action 2: Upon DRF flag reception,

propagated from the current root node, the receiving node invalidates

its routing table, freezes flit injection, stops its pipeline, and enters

recovery. The state is set back to “normal” after N2 cycles when

the reconfiguration process is completed. Each subsequent DRF flag

reception will only invoke Actions 4 and 5. However, in case the

router had received an AF flag and is in its alert state and not in

recovery mode, by the end of the current N cycles it will be designated

that this node belongs to a network partition. Since all nodes in all

possible partitions will eventually broadcast, all boundaries among all

partitions will eventually be discovered (Section II-D).

Tagging Link Directions - Action 3: During this step, with the

use of topology-propagating DRF flags, ports at a router are marked as

either “up” or “down.” This ensures that all source-destination router

pairs will eventually mark their routing tables with next-hop routes to

be used to reach each other. The walkthrough example in Section II-D

shows how DRF flags are propagated according to pre-specified rules

which in addition maintain deadlock-free routing (Section II-E).

Flag Reception

State == 
“Recovering”

NOYES

Entering 
Recovery

� Invalidate Routing Table  (RT)
� Freeze pipeline progression of head flits
� State†: from “normal” to “recovering”

†state automatically switches back to 
“normal” after N 2 clock cycles

Action 1

Tagging Link 
Directions

Action 2

� Direction [port(s) of flag reception] = “up”
� Direction [remaining port(s)] = “down” 

Routing Table 
Update

Action 3

DRF Flag 
Forwarding

State = Alert

�A node waits for its broadcasting window to 
arrive so as to become the root node of: (1) 
the entire network if the DRF flag has been 
received resetting any Alert State, (2) its 
own subnetwork when the AF flag is 
the last flag received and is in Alert State 
(physical network partitions exist ) 

�The subnetwork root node initiates a new 
up*/down* marking when the same node is 
allowed to broadcast flags, i.e., becomes the 
root,  and its current state is in Alert Mode

NO YES
Allow to 

Broadcast

AF Flag 
Forwarding

YES NO
Output Link 

== Faulty

�DRF flag for reconfiguration
�AF flag for faulty link alert 

DRF flag received from:
� “down” port: forward to all ports
� “up” port: forward to “down” ports only

Action 4

YES NO
DRF Flag

� Routing Table [broadcaster] = port of first 
DRF flag reception 

Action 5

Reset Alert 
State

State == 
“Recovering”

NOYES

Ignore flag

�When a node is in Recovery Mode all 
incoming Alert Flags are ignored 

Fig. 1. Hermes reconfiguration algorithm.

Routing Table Update - Action 4: During each broadcast, a root

node basically informs how it can be reached from all other nodes via

the spreading of DRF flags that follows legal up*/down-based turns

(see Action 5); these DRF flag broadcasting patterns trail relevant

paths starting from this root that are recorded, in a mirror-reflected

mode, into each nodes’s routing table. Any node other than the root

then uses these pre-recorded table paths to reach that root node.

Flag Forwarding - Action 5: After the routing table of an

intermediate node is updated, the same node broadcasts its DRF flag

through those ports (via the 2-bit overlay control network) where the

associated link is healthy, that it had not received a DRF flag from

during the previous cycle, and it broadcasts an AF flag through the

port(s) where the associated link is faulty. In addition, the up*/down*

turn restrictions are also taken into consideration, that is, a DRF flag

received from an “up” link is never sent to an “up” link; only “up”

to “down” and “down” to “down” broadcasts are legal. In case where

the link is faulty, no turn restrictions are applied, and the AF flag is

sent atop the faulty link using the 2-bit overlay control network to

the neighboring node. If the receiving node of the AF flag is already

in its recovering state then the AF flag is ignored (Fig. 1).

C. Timing and Synchronization

Single-cycle flag forwarding among node pairs ensures that the

broadcasting window of each node deterministically takes N clock

cycles to complete, in an N-node topology. This considers the worst-

case, but unrealistic, scenario of having a minimum spanning tree-like

faulty topology, where N cycles are needed for a node’s complete

broadcast. Since each node broadcasts in a non time-overlapping

atomic mode, reconfiguration takes N2 cycles to complete.

A broadcaster can be easily identified by all nodes, exactly

because only this node is expected to broadcast during a specific time
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Fig. 2. A walkthrough of up*/down* marking and the sub-network
detection mechanism using a 3× 3 mesh consisting of subnetworks A
and B. AR denotes “Alert Register” is on, red lines with an “X” are
broken (i.e., faulty) links, solid and dotted lines show the broadcasting of
the DRF and AF flags respectively at specified broadcast cycle times.

window, based on the system’s global clock which acts a common

reference point. Hence, no ID of any node is forwarded since the

current root broadcaster is known to all nodes. The Node ID Extractor

(Section III), a piece of hardware that resides in all nodes, identifies

the current broadcasting node. Atomic broadcasts [1], where only

one node is allowed to broadcast based on a simple formula which

correlates the global clock to a node’s unique ID, are used. This

mathematical formula states that the first log2(N) LSBs of the global

clock designate the broadcasting cycle of each node, while the next

log2(N) higher bits are used to identify the broadcasting node; the

latter ensures exactly N repetitions (i.e., one for each router node)

using modulo arithmetic as node((ID)mod(N)) for node with identity

ID, then node((ID+1)mod(N)) for node with identity (ID+1) and

so on until all N become non time-overlapping roots and broadcast

during their assigned time slot. Assuming an 8 × 8 network with

64 nodes, as in our experimental evaluation of Section IV, the first

log2(64) = 6 LSBs and the next higher log2(64) = 6 bits of the global

clock are used to identify the broadcasting cycle of each node, and

the broadcasting node’s ID, respectively. In case multiple faults occur,

one of the nodes which detected a fault will become root first, which

is arbitrarily based on the received modulo-based slot; eventually all

nodes become roots and broadcast their flags. The direction of the

received DRF flags at a router, each designates the cardinal direction

at the respective port that they are received, with the information

marked into the routing table as 4-bit one-hot records (Section III).

D. Up*/Down* Marking and Sub-Network Discovery Walkthrough

Fig. 2 walks through up*/down* marking and our Sub-Network

Detection Mechanism (SNDM) that can detect individual physical

network-dividing non-communicating partitions, using a 3×3 mesh.

The former is served by the network-spreading single-bit DRF flags

(Direction Recording Flag), and the latter by the single-bit AF flags

(Alert Flag), both which span the network on a cycle-by-cycle basis

using the 2-bit overlay control network (Section II-B).

Fig. 2 emphasizes the usage of AF flags used by SNDM as they

are a unique feature of Hermes, that traverse the topology along with

DRF flags as in Ariadne’s scheme [1]. In our example, links 4 ↔ 5

and 7 ↔ 8 are initially broken, while link 1 ↔ 2 currently breaks

down, partitioning the topology into sub-networks A and B. Instantly,

node 1 acts as the root, initiates the reconfiguration process, enters

recovery mode, and invalidates its current routing table entries. The

broadcast cycle times of DRF and AF flags are shown at the side

of each node, which begin spreading towards the vicinity of node 1

(Section II-B). The purpose of using the AF flags is to set a virtual

border at the links residing at the physical edges of sub-networks, so

that the topological partitions can be marked and hence identified.

As Fig. 2-(a) shows, node 1 marks its output ports connected

to links 1 → 0 and 1 → 4 as “down” (D), and sends DFR flags to

nodes 0 and 4. This sets their Status Register (SR) in recovering

state (Section III), where their respective input ports are set as “up”

(U), with these port directions recorded into their respective routing

tables. Nodes 0 and 3 are aware that node 1 is the root as the node

ID is extracted from the global clock based on modulo arithmetic

(Section II-C), and hence all nodes are synced (Node ID Extractor

of Section III). Node 2 only receives an AF flag, via the control

network, since link 1 ↔ 2 is now faulty, setting its Alert Register

(AR) in alert state. Following up*/down* rules, in cycle 2 node 0

marks link 0 → 3 as D and U, and node 4 marks links 4 → 3 and

4→ 7 both as D and U, all at their two respective ends. Nodes 3 and 7

are set in recovery state, while node 4 sends an AF flag to node 5 atop

4↔ 5 faulty link, via the 2-bit control network, setting node 5 in alert

state. Finally, in cycle 3 the north and east ports of node 6 are marked

U, setting node 6 in recovery state, while node 8 receives an AF flag

from node 7 atop 7 ↔ 8 faulty link setting node 8 in alert state. Now

subnetwork A has completed both its up*/down* marking for all of

its member nodes and recording of all paths which lead towards root

node 1. Note that AF flags obviously cause no up*/down* marking

at the receiving nodes, since they merely designate the possibility of

a network disconnection at the receiver node, and that no U → U

marking is allowed to ensure acyclic behavior [1], [16], [23], [26].

Also, no node that receives a DRF or AF flag from one of its ports

can later send any other flag using that same port to avoid erroneous

port marking synchronization; flag reception time is tied to the global

clock dictated by the Node ID Extractor (Section III).

With N = 9 cycles elapsed, where N is the node count, node 2

broadcasts next, designated by the global clock utilized by the Node

ID Extractor (Section II-C), initiating a new up*/down* marking chain

of events, shown in Fig 2-(b). The reception of an AF flag and no DRF

flag by node 2 from the previous broadcasting cycle, points towards

its separate sub-network presence. Node 2 broadcasts its DRF and

AF flags accordingly, following the flag-based up*/down* marking

rules. The south port of node 2 is set as D while the north port

of node 5 is set to U in cycle 1, and so on. However, when nodes

1, 4 and 7 receive an AF flag from corresponding nodes 2, 5 and 8

residing in sub-network B, they ignore this flag since they are already

in recovering mode. Nodes 3, 4, 5, 6, 7, 8 and 0 will broadcast in

series as roots when their broadcasting turn arrives, as dictated by the

global clock, where each one informs its sub-network-residing nodes

how they can be reached by broadcasting DRF flags.

The process completes in N2 cycles with node 0 ending its

broadcast. By then, only valid escape paths are recorded into the

routing table of each router, reflecting upon routes that are valid
only within the same sub-network, i.e., either sub-network A or sub-

network B. This information may subsequently be provided to the

operating system to mark the borders of these sub-networks, enabling

the assignment of independent processes and threads to each such

sub-network, being serviced by a sophisticated algorithm such as [8].

E. Hermes Deadlock Freedom

The DOR-XY or O1TURN [28] routing schemes used in Hermes

are derived form the Turn Model [18] which ensures that channel



dependencies do not form loops, guaranteeing deadlock-freedom [10].

In up*/down* routing, the unique node order assignments to each

router, where all increasing-order turns (down links) are disabled,

followed by decreasing-order turns (up links), or vice-versa, ensure a

unique visiting order where this decreasing to increasing node visiting

order ensures the absence of routing cycles. Hence, the up*/down*

routing function is acyclic and by definition deadlock-free, as Silla

and Duato elaborately prove in [29]. Further, Aisopos et al. [1] prove

that up*/down* is also deadlock-free in a faulty NoC environment.

The essence is to prove that the co-existence of DOR-XY and

up*/down*, and O1TURN (DOR-XY + DOR-YX) and up*/down*,

under H-XY and H-O1T respectively, are also deadlock-free. XY

and up*/down* each require a single VC to be deadlock-free, while

O1TURN requires 2 VCs, one for XY and the second for YX [28]. In

both H-XY and H-O1T, a packet initially routes using a VC dedicated

to the DOR function(s): XY (VC0) in the former, and either XY

(VC0) or YX (VC1) in the latter. In both H-XY and H-O1T, a packet

only switches to up*/down* (VC1 in H-XY and VC2 in H-O1T)

when it encounters a faulty link in its path, and never switches back

to either XY or YX. Hence, cyclic dependencies among VC0 and

VC1 under H-XY, and between VC0 to VC2 and between VC1 to

VC2 in H-O1T, are avoided, guaranteeing that H-XY and H-O1T are

devoid of routing loops, i.e., acyclic, and by definition deadlock-free.

III. HERMES MICRO-ARCHITECTURE

Hermes uses a 4-stage pipelined wormhole NoC router with input

Virtual Channels (VCs), comprising (1) routing computation, (2) VC

arbitration, (3) switch allocation, (4) crossbar traversal and 1-cycle

physical link traversal, along with some additional circuitry required

for Hermes’ operation as the upper part of Fig. 3 shows2.

Hermes’ Routing Logic unit shown in Fig. 3 is divided into

three blocks, comprising up*/down*, DOR-XY and DOR-YX routing,

each utilizing its own independent VC. H-XY utilizes the first two

blocks, while H-O1T utilizes all three blocks where XY or YX

routing are each used with equal probability when routing in a fault-

free region. The up*/down* block is directly connected to Hermes’

logic unit which provides the routing information, contained in the

routing tables, and is utilized when the current packet being routed

has encountered a faulty link in its progressive path. These routing

tables are updated every time a new faulty link(s) appears in the

network, dictated by said reconfiguration process (Section II-B). The

VC Allocator is responsible in assigning a packet to the VC governed

by up*/down* when a packet is being routed in a faulty region;

otherwise XY’s VC is assigned under H-XY, or either of XY or YX

VCs are assigned in H-O1T, when routing in a healthy region.

Fig. 3 also shows Hermes’ remaining logic blocks: the 1-bit

Status Register (SR) with “normal” and “recovering” states, the 1-

bit Alert Register (AR) with ‘normal” and “alert” states, four 1-bit

registers to designate “up” or “down” routing (one for each port) when

up*/down* is in use, the logic to update the SR and AR registers

accordingly (Action 3), to fill the routing tables (Action 4), and to

forward the DRF or AF flags (Action 5). In a router there exist

sixteen 1-bit width wires used for flag reception and forwarding,

shown as wires f lag0−3(in) and f lag0−3(out) for flag in and out

signals, respectively. Each f lag(in) and f lag(out) pair at each port

consists of two 1-bit wires, each for DRF and AF flag forwarding.

2Hermes is orthogonal to other existing pipelined NoC router architectures
such as the speculative wormhole architecture in [24].
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Fig. 3. Schematic of an input-buffered wormhole flow-control router
architecture with virtual channels incorporating Hermes components.

The SR holds the current state of the network, where “recovering”

implies that the network is currently stalled to reconfigure the routing

tables, and where “normal” implies that the network is operating

normally or has resumed into normal operation after a recovery from

fault(s) and completed table reconfiguration. Under the normal state,

packets can be injected into the network since valid routing paths exist

in the routing table of each NoC router. The AR is updated as follows:

if a new AF flag is received and the SR is in the “normal” state, then

the AR register is set to the “alert state.” If an AF flag is received

under a current recovering state, then the AF flag is ignored. If the

AF flag had already been received and the AR register is currently in

the “alert” mode, then if a DRF flag is also received, the AR is reset

to the “normal” state (Section II-B and Section II-D).

When the SR is in recovering state, the signal which freezes head

flits and invalidates the routing tables is set to “on.” This informs the

up*/down* routing table block to discard the information currently

held in it. The input buffers and injection ports are also stopped from

forwarding/injecting packets into the network. During this recovering

state, and the initial DRF flag reception at each node in the network,

the up*/down* logic block is utilized by the root node and the

subsequent nodes to mark their output and input ports as either “up”

or “down” according to the rules detailed in Section II-D. The flag

forwarding logic and output port status signals co-operate to decide

when and what kind of flag (DRF or AF) needs to be forwarded

to each direction according to (1) the up*/down* logic values and

marking scheme (Section II-D), and (2) link statuses (Section II-B).

The four input 1-bit flag wire signals each direct the up*/down*

marking in their respective cardinal direction (N, S, E, or W). The

output port status identifies the state of health of each output port; in

case the port is non-healthy, i.e., faulty, then the AF flag is forwarded

to the next neighboring node, otherwise the DRF flag is forwarded

(Section II-D). The DRF flags are received by the routing table filling



0 0.05 0.1 0.15 0.2 0.25
30

40

50

60

70

80
1 faulty link

Injection rate (flits/node/cycle)

A
ve

ra
ge

 n
et

w
or

k 
la

te
nc

y 
(c

yc
le

s)

 

 

��������	
���
��������	�����
��������	�����

�������	
���
�������	�����
�������	�����

����������	�����
����������	�����
��������
�����	�����

�����������	�����
�����������	�����
���������
�����	�����

0.05 0.1 0.15

40

50

60

70

80
3.12% faulty links

Injection rate (flits/node/cycle)

A
ve

ra
ge

 n
et

w
or

k 
la

te
nc

y 
(c

yc
le

s)

 

 

0.05 0.1 0.15

40

50

60

70

80
5.36% faulty links

Injection rate (flits/node/cycle)

A
ve

ra
ge

 n
et

w
or

k 
la

te
nc

y 
(c

yc
le

s)

 

 

0.02 0.04 0.06 0.08 0.1 0.12 0.14

40

50

60

70

80
10.27% faulty links

Injection rate (flits/node/cycle)

A
ve

ra
ge

 n
et

w
or

k 
la

te
nc

y 
(c

yc
le

s)

 

 

Fig. 4. Latency-throughput curves using a fully random faulty link
placement scenario under synthetic uniform random traffic.

logic, and along with the extraction of the broadcasting node’s ID

and the direction of the input port(s) from where the DRF flag(s)

was received, it updates the corresponding entry in its routing table

using one-hot encoding to designate the cardinal direction. The table

consists of N entries, 4 bits each. Once a table entry is recorded,

it cannot be re-written at a later cycle; a table entry can be re-

recorded only when a new reconfiguration process is initiated. Finally,

the hardware which identifies the broadcasting node uses a set of

2log2(N) bits, where N is the number of nodes in the NoC, with the

N first LSBs used to compare to the global clock to designate the

broadcasting cycle of each node, while the next log2(N) higher bits

are used to identify the flag-broadcasting node (Section II-C).

IV. EXPERIMENTAL SETUP AND RESULTS

To evaluate Hermes’ performance we implemented a detailed

cycle-accurate simulator that supports 2D meshes with four-stage

pipelined routers (Fig. 3), each with 1 to 3 VCs per input port

each consisting of 6-flit buffers. Our framework utilizes (a) synthetic

Uniform Random (UR) traffic where all nodes have an equal proba-

bility of sending and receiving a packet per unit time, (b) Transpose

(TR) traffic where packet source and destination coordinates matrix-

alternate, an adversarial NoC-stressing form of traffic, and (c) real

application workloads gathered from multi-threaded application exe-

cution in a full-system simulation environment, specifically from the

Netrace benchmark suite, with their packets maintaining dependencies

among them, tracked by our simulator for accuracy and fidelity.

Synthetic traces, with six-flit 128-bit packets, are run for a million

clock cycles, while in Netrace applications results were gathered

within a 150-million cycle “region of interest.” All experiments utilize

an 8×8 mesh-interconnected NoC.

All link faults are topologically assigned in a purely random man-

ner, but maintaining full topology connectivity, with 50 experiments

repeated at each point to even-out the idiosyncrasy of each individual

spatial faulty link placement, with results averaged. We compare

against Ariadne [1] and uDIREC [23] which also utilize up*/down*

routing. Further, no packets are segmented across a chain of routers

in a path at the time of fault occurrence, as no retransmission

mechanism, which can be orthogonally added [6], [10], is present.
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Fig. 5. Network routing latency using the Netrace benchmarks.

A. Results With Synthetic Uniform Random Traffic

Latency-throughput results under UR traffic are presented in

Fig. 4, using 1 to 3 VCs per port for all considered routing schemes,

with four faulty link intensities. Under all fault scenarios, and under

any VC count, all Hermes variants consistently outperform Ariadne

due to its heavy victimization of healthy bidirectional links in

satisfying the up*/down* routing rules in pursue of deadlock-freedom.

With up to 5.36% faulty links all 2-VC Hermes variants outper-

form uDIREC with 3 VCs. This shows that VC classification in terms

of intended usage, i.e., encountering faulty (up*/down*) vs non-faulty

(XY or O1TURN) links in a routing path, is superior to the plain
use of VCs being used without restraint by a single routing scheme
(up*/down*) irrespective of the health status of links. Under 10.27%

faulty links, H-XY (2 VCs) has the same performance as uDIREC

with 3 VCs. Evidently, under UR traffic, the performance of all four

Hermes variants degrades gracefully as faulty link counts increase.

Additionally, with just one faulty link, the negative performance

impact with Hermes is limited, as opposed to the cases of using

Ariadne or uDIREC. Indicatively, H-XY and H-uXY outperform

Ariadne and uDIREC with 2 VCs, and Ariadne and uDIREC with

3 VCs, by 28.2% and 23.9%, and 16.7% and 14.3%, respectively.

B. Realistic Full-System Workload Results

Realistic workload traces were captured from an 8 × 8 mesh-

interconnected CMP running all the multithreaded PARSEC v2.1 suite

benchmarks [3] executed onto the M5 simulator [2]. The Netrace

infrastructure [20] was used to track and relay dependencies among

packetized messages as expressed in a true CMP system. Each of the

64 tiles contains an in-order Alpha core at 2 GHz, each containing

separate 32 KB 4-way set associative L1 I&D caches with 3-cycle

access latency with coherency maintained via a MESI protocol, and

a 16 MB L2 shared 8-way set associative 64-bank fully-shared S-

NUCA with 64 B lines with an 8-cycle access time. Packets consist

of 64 and 576 bits for miss request/coherence traffic and cache
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Fig. 6. Zero-Load latency under (a) Uniform Random (UR) and (b) Transpose (TR) traffic, and saturation throughput under (c) UR and (d) TR.

line transfers, respectively. All FT mechanisms use 3 VCs per input

port, run under three random faulty link NoC topology placement

scenarios: one faulty link, 5.0% and 10.0% NoC faulty links.

Fig. 5 presents average routing latency results for all Netrace

benchmarks. Ariadne and uDIREC are increasingly outperformed

by Hermes’ four variants with increasing faulty link counts, prov-

ing Hermes’ higher sustainable performance and robustness. The

incorporation of the uDIREC scheme in hybrid H-uXY and H-

uO1T shows performance improvements against H-XY and H-O1T

respectively, due to the better utilization of unidirectional links and

smaller healthy link victimization, with this gap widening under the

severe case of 10% faulty links. Indicatively, under 5% faulty links,

on average H-XY outperforms Ariadne and uDIREC by 9.60% and

4.71% respectively, H-O1T outperforms Ariadne and uDIREC by

10.66% and 5.83% respectively, H-uXY outperforms H-XY and H-

O1T by 3.69% and 2.55% respectively, while H-uO1T outperforms

H-XY and H-O1T by 5.12% and 3.99% respectively.

C. Zero-Load Latency and Saturation Throughput

An injection rate of 0.01 flits/node/cycle is used to emulate

zero-load, where 3 VCs per port are used in all tests. Fig. 6-(a)

shows that under the use of UR traffic H-uXY and H-O1T perform

identically to uDIREC, as the opportunities for route optimization

with O1TURN routing are non-existent at zero load. All these three,

however, outperform Ariadne, H-XY, and H-O1T, as the last three

victimize a greater number of healthy links due to their bidirectional

use of links vs unidirectional under uDIREC. With one faulty link

Ariadne is outperformed by 9.0% by all the other protocols. Under TR

traffic, in Fig. 6-(b), interestingly at mid to high fault counts, uDIREC

outperforms the remaining schemes due to less switching among VCs,

when encountering faults, versus all Hermes’ variants. With 43 faulty

links the performance of all algorithms begins to improve due to a

more optimal selection of shortest paths derived from the up*/down*

scheme, despite having fewer healthy links available.

Saturation throughput is the point where the average NoC latency

is 3× its zero-load latency. All tests utilize 3 VCs per port. Under UR

and TR traffic patterns of Fig. 6-(c) and Fig. 6-(d), respectively, Ari-

adne performs almost steadily, albeit at lowest sustainable throughput

vs all other schemes, due to the complete dominance of up*/down*

routing which victimizes some links as being bidirectionally faulty.

uDIREC is the second worst-performing scheme across both UR and

TR traffic patterns, and performs slightly better than Ariadne due to

its milder link victimization under unidirectional up*/down* routing.

Interestingly, and consistently, under TR traffic, H-XY outperforms

H-uXY, while H-O1T outperforms H-uO1T, as under uDIREC the

relatively heavier reliance on up*/down* routing, as fewer links are

victimized, creates higher congestion than alternatively using XY or

O1TURN routing. Overall, under both UR and TR, the four Hermes

variant schemes are performance-superior to Ariadne and uDIREC.

D. Hardware Synthesis Results

We implemented and synthesized all the Hermes hardware blocks
illustrated in Fig. 3 and described in Section III using the Synopsys

Design Compiler, targeting a commercial 45 nm CMOS technology

library at 1 V. We consider three-stage speculative pipelined virtual-

channel routers [24] with credit-based wormhole flow-control with

a 64-entry SRAM-based routing table, 128-bit links, 6-flit buffers, 2

GHz clock rate, at 50% switching activity, all for an 8×8 mesh topol-

ogy. The 2-bit overlay network described in Section II and Section III

possesses Triple Modular Redundancy (TMR). Ariadne [1] was also

implemented, however the uDIREC reconfiguration scheme [23] is

not compared against Hermes as it is heavily dependent on software

strategies to form routing paths; in addition, the authors do not

specify the implementation of the required end-to-end ECC blocks,

and only report area overheads. It is, however expected, that once

the reconfiguration hardware, the routing tables and ECC blocks are

taken into account, that uDIREC will surpass Hermes’ overheads.

Table I reports power-area overheads for the base speculative NoC

router, as well as Ariadne, H-XY and H-O1T with 1 up to 3 VCs per

input port. H-XY (2 VCs per port) presents 5.31% area and 9.81%

power overheads respectively as compared to the base 2 VC per-port

NoC router, while the corresponding comparisons against Ariadne

with 2 VCs are 0.94% and 4.95%. H-O1T (3 VCs per port) presents

4.47% area and 5.91% power overheads respectively as compared to

the base 3 VC per-port NoC router, while the analogous comparisons

against Ariadne with 3 VCs are 1.51% and 0.47%.

V. BACKGROUND AND RELATED WORK

Fault-Tolerant (FT) approaches applicable to NoCs have been

inspired from macro-level Interconnection Networks (INs), where [6],

[10] provide a comprehensive coverage. In both domains the scope

of all FT approaches is analogous: to sustain seamless communi-

cation among all interconnected entities in the presence of faulty
links, nodes, or regions. Duato’s landmark work [9] is conducive in

developing a theory for FT routing in INs, and consequently NoCs.

Basically, as long as FT routing provides full connectivity devoid

of cyclic channel dependencies in a sub-connected (faulty) topology,

then the FT function guarantees deadlock- and livelock-freedom.

Most FT approaches are categorized as: (1) FT routing algorithms

that bypass link/router failures, (2) logical/architectural redundancy

within the routers to improve architectural resilience, and, (3) hybrid

approaches that combine (1) and (2). Next, category (1) is further sub-

classified as: (a) FT routing with bounded fault counts, (b) FT routing

with unbounded faulty link counts but with spatial placement/pattern

limitations, and, (c) unbounded faulty link counts and no spatial

placement restrictions. FT schemes in the latter category are the most

flexible, however the hardest to devise, in which Hermes belongs to.

The restrictive approaches outlined in categories (1-a) and (1-b)
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above dominated the initial research attempts in FT INs. Under (1-a),

Dally’s early reliable router was a 1-FT architecture [7], while the

work by Glass and Ni only allowed (n-1) faults in an n-dimensional

topology (just one in a 2D mesh) [19]. Many related early works

can be found in [6], [10]. Under category (1-b), in an effort to

define permissible fault patterns in the topology to avoid deadlocks

and simplify FT routing, researchers utilized block-structured shapes,

such as convex and/or concave regions of faults, at the expense of

victimizing healthy links and routers as being unhealthy so as to form

such regions. Significant works in [17], [21], [32] fall in this class.

Under category (1-c), [15] proposes distributed routing algo-

rithms that re-configure the network to avoid faulty components.

The Vicis router [14] employs specialized BIST testers in each

router to detect faults, and then leverages extensive re-configurability

and an appropriately-designed routing algorithm to perform port-

swapping and crossbar bypassing. Next, Ariadne [1] uses up*/down*

routing to reconfigure routing tables when faults in links occur, while

uDIREC [23] reconfigures routing paths in a faulty NoC also using

up*/down* routing, where an iterative software-based spanning tree

kernel utilizes NoC path diversity to optimize routes and achieve

smaller link victimization vs Ariadne using unidirectional links.

Under category (2), Bulletproof [5] analyzes the reliability vs.

area tradeoffs of various NoC router designs and proposes run-time re-

pair and recovery methodologies at the system-level. Next, [31] makes

use of partially faulty links, while [13] converts a uni-directional link

to work in a full-duplex mode in case the node-pairing link fails.

Lastly, under category (3), stochastic communication techniques [11]

use probabilistic packet broadcasting schemes to handle faults.

VI. CONCLUSIONS

This paper presented Hermes, a top-performing, distributed, and

deadlock-free FT routing algorithm with high robustness and graceful

performance degradation with increasing faulty link counts. Hermes

is a hybrid routing scheme: it balances traffic to sustain high perfor-

mance onto fault-free paths, while it provides pre-configured escape

path selection in the vicinity of faults. Hermes improves throughput

by up to 3×, and is able to identify network segmentations.
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